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A relation between
total multigraphs and
total multidigraphs

by RAUL A. CHIAPPA - ALICIA MACCARI - ALICIA ZILIANI

Instituto de Matemadtica-Universidad Nacional del Sur
Bahia Blanca - Argentina

SUMMARY - We consider finite, connected multigraphs and multidi-
graphs with loops permitted. We define the notions of total multi-
graph and total multidigraph and we characterise the latter by
means of subdivision digraphs, extending in a natural way a result
of Chartrand and Stewart [2]. Furthermore, we obtain a relation
between the notions of total in the directed and undirected cases
analogous to that established in [3] for the line-graph concept.

1. Introduction

In 1932 Whitney [9] obtained some relations between the line-
isomorphisms and the vertex-isomorphisms 1in graphs without Toops.
In order to give a new proof of some of these results, in 1943,
Krausz [8] defined and characterized the notion of lTine-graph.

This concept was later extensively studied and generalized in
different ways to graphs with loops or multiple lines.

A similar notion for digraphs without loops was studied in 1960
by Harary and Norman [5] and independently for arbitrary multidi-
graphs, in 1964, by Heuchenne [7].

The only attempt to relate the Tine-graph transformation with
the line-digraph transformation, known to us, was done in 1979 by
Chiappa [3]. There, two generalizations of the line-graph concept
were considered and it was proved that each of them can be obtained
by means of certain operations which involve the Tine-digraph trans



formation.

On the other hand, in order to study coloring problems and fol-
lowing the same idea that lead to the concept of Tine-graph
Behzad [1] introduced in 1965 the concept of total graph. In 1966
Chartrand and Stewart [2] studied total digraphs.

As far as we know, total digraphs have not been studied since
and all the papers on total graphs assume that there are neither
multiple Tines nor Tloops.

We next extend, in a natural way, the concept of total to multi-
graphs and multidigraphs and we find a relation between them simi-
lar to that established for the line-graph notion in [3]. Also we
characterize the total of a multidigraph D by means of the square
of the subdivision digraph of D, as Chartrand and Stewart in [2].

We shall consider finite, connected multigraphs and multidi-
graphs with loops permitted and we shall use, in general, the ter-
minology of [4], [5], [6].

1.1. Let D = <V(D),U(D)> be a multidigraph. We say that:

a) the point Vs is k-precedent to the point vj if there exist k
arcs (vi,vj).

b) the arc x = (vi,vj) is precedent to the arc y = (v.,v

Vi)
c) the point v; is precedent to the arc x and x is precedent to Vi

if x = (vi,vj).

Remark that in b) and c) precedent means k-precedent for k=1, and
k-precedent is meaningless for k > 1.

1.2. Let D be a multidigraph. The total multidigraph T(D) of D is
a multidigraph whose points are in one-to-one correspondence with
the points and arcs of D, and such that the point u is k-precedent
to tne point v in T(D) if and only if in D the element correspon-

ding to u is k-precedent to the element corresponding to v. (See
Figure 1).
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Fig.1

A multidigraph H is a total multidigraph if there exists a mul-
tidigraph D such that H = T(D).

The induced subdigraph of T(D) whose points represent the arcs
of D is the line-digraph or adjoint-digraph of D which we shall
denote by A(D).

1.3. It is easy to see that:
a) If D has p points and q arcs, then T(D) has p+q points and
3q + § 1d(vi).od(vi) arcs.

i=1
b) T(D) is the arc-disjoint union of the submultidigraphs D, A(D)
and M(D), where M(D) is the digraph whose points are the same as
those of T(D) and whose arcs are (vi,x)(x,vj) for each arc
X = (Vi’vj)'

1.4. Let G = <V(G),U(G)> be a multigraph. We say that:
a) the points Vi’vj are k-adjacent if there exists k lines [vi,vj].
b) two different lines are k-adjacent if they have k common points.

In this case k can only be 1 or 2. Any loop is l-adjacent with it-
self.

c) if x = [vi,vj],vi # vj then x is l-adjacent to \ and vy If

. = v._. then x and v, are l-adjacent.
i j i

We shall also say adjacent instead of l-adjacent.



1.5. Let G be a multigraph. The total multigraph T(G) of G is a
multigraph whose points are in one-to-one correspondence with the
points and lines of G, and the point u is k-adjacent to the point
v in T(G) if and only if in G the element corresponding to u is k-
adjacent to the element corresponding to v (see figure 2).
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Fig.2

A multigraph H is a total multigraph if there exists a multi-
graph G such that H = T(G).

The induced submultigraph of T(G) whose points represent the 1i-
nes of G coincides with the v-line-graph of G defined in [3]. Now
we simply say Tine-graph of G and we shall denote it A(G).

1.6. It is easy to see that if G has p points and q lines then
a .
T(G) has p+q points and 3q + 5 (21) lines, where a; denotes the

i=1
number of incident lines at the point V-

2. Characterization of total multidigraphs
Utilizing the so-called subdivision digraph, in the same way as
[2] , we shall give a necessary and sufficient condition for a mul-

tidigraph to be a total multidigraph.

2.1. The subdivision digraph S(D) of a multidigraph D is that di-



graph obtained from D by replacing each of the k arcs (vi,vj) of D

with a new point Vijt’ 1 €t <k and the two arcs

(Visvige)s
(vijt,vj).

A digraph S is called a subdivision digraph if there exists a
multidigraph D such that S = S(D).

The point x of a multidigraph D is a carrier if id(x) = od(x) =1.

The points Vit of a subdivision digraph obtained as above are car-
riers.

2.2. THEOREM. A digraph S is a subdivision digraph if and only if:

a) S is a cycle of even length n, n > 2; or

b) S is not a cycle and every. semipath joining two noncarriers (dis
tinct or not) has even length.

PROOF. Neccesity: Let S be a subdivision digraph since S is a cycle
if and only if D is and since the subdivision process doubles the
Tength of a cycle, it follows that the only cycles which are sub-
division digraphs must be of even length.

If S is a subdivision digraph which is not a cycle there exist
points that are not carriers; they are points of D. Then b) fol-
Tows from the connectedness of D and 2.1.

Sufficiency: If S is a cycle of even length n, then there exists
a cycle D of length n/2, such that S= S(D).

If S is not a cycle, then S contains at least one noncarrier
point v. Let V be the set of all points of S which are connected
to v by a semipath of even length. This set is well defined since
if a point u of V were connected to v by both an even and an odd
semipath, this would imply that the noncarrier v or another one
is connected to itself by a semipath of odd length, contradicting
our hypothesis. Now if V is taken to be the point set of a digraph
D such that a point Vi is k-precedent to a point Vs in D if and on-

ly if there are k paths of length two from v, to Vs it is easy to
see that S = S(D)m

2.3. The square D% of a digraph D is defined as that digraph whose



points are those of D and such that a point u is precedent to a

point v 1in D2 if and only if u is connected to v by a path of
length one or two in D.

2.4.THEOREM. Let D be a multidigraph, then [S(D)]2 = T(D).

PROOF. From the preceding definitions, if D has p points and q
arcs, S(D), [S(D)12 and T(D) have p+q points each. Since each of
the k arcs (vi,vj) of D is replaced by a path v;,(v
. . 2
(vijt,vj), vj,l <t <k in S(D), it follows that [S(D)]“ has
2 k arcs(vi,vijt), (Vijt’vj)’ k arcs (vi,vj) and if Vi T v, loop
in each vijt 1 <t <k. Furthermore if D has r arcs (vj,v

[S(D)]2 has kr arcs(v

iVije)r Vijeo

s 3

..osV. ) 1 <t <k, 1 <h<r. Therefore the
1jt’ jsh
arcs of [S(D)]2 are in one-to-one correspondence with the arcs of

M(D), D and A(D) respectively. Hence T(D) = [S(D)]zn

2.5.COROLLARY. A multidigraph T is a total multidigraph if and only
if there exist a subdivision digraph S such that s? =T,

3. Relationship between total multigraphs and total multidigraphs

3.1. The symmetrized multidigraph G°® of a multigraph G is obtained
as follows.

a) The points of G° are those of G

b) Each line u = [x,y]l of G, (x#y) is replaced by the arcs (x,¥),
(ysx). One of these shall be denoted u and the other u'.

c) Each Toop u of G is preserved in G®°. In this case we consider
u=u'.

This notion coincides with that of vertex-symmetrized multidigraph
given in [3].

Let C be the mapping introduced in [3] which maps each digraph



A(G®) to the multidigraph C(A(G®)) obtained identifying each pair
of points u,u' of A(G®) as one point u, and omitting the arcs (u,u'),
(u',u) if u#u'.

3.2. Let C be the mapping which maps each multidigraph T(G®%) to the
multidigraph C(T(G®)) which is the arc-disjoint union of G%,
C(A(G®)) and M(G®). Here M(GS) is the digraph whose points are
those of G° and C(A(GS)) and whose arcs are obtained in the follo-
wing way: (a) If u#u', where u = (vi,vj) in G°, the arcs (vi,u),
(u',vi),(u,vj),(vj,u') of M(G®) become (vi,uo),(uo,vi),(uo,vj),
(vj,uo) of M(G®). (b) If u=u' is a loop incident at the point x,

the arcs (x,u),(u,x) of M(GS)‘become (x,ug)s{ug,x) of M(G®).
(See fig.3).




Fig.3

C(T(Gs)) is a symmetrized multidigraph

3.3 Let D be the mapping which maps each symmetrized multidigraph
to the multigrapn obtained by leaving the loops unchanged and re-

placing each pair of opposed arcs by one Tine which incides at the
same points that these arcs do.

e

to



3.4. REMARKS

a) The mapping D is the inverse of the function s: G - G° which
maps each multigraph G to the symmetrized multidigraph GS.

b) According to the preceding definitions the points of D(C(T(G®)))
and C(T(G®)) coincide. The points of C(T(G®)) are the disjoint
union of the points of G° and C(A(G®)).

c) There is a one-to-one correspondence between the points of
C(A(G®)) and the points of A(G) which allows us to identify x
with x, since each point x, of C(A(G®)) corresponds to the pair
of points x,x' of A(G®) and these to the arc x of G.

d) Let x,y be k-adjacent points in D(C(T(G%))) such that:
(1) if x € V(6°), y_ & V(C(A(G®))) then k=1

(ii1) if Xo2¥, € V(C(A(GS))) then XosYo COrrespond to the pairs
of the opposed arcs x,x' and y,y' of G® respectively. If at
Teast one of them is a loop, that is x=x' or y=y', we have k=1
but if x#x' and y#y' we have k=1 or k=2.

3.5.THEOREM. Let G be a multigraph. A multigraph H is the total
multigraph of G if and only if H = p(C(T(GS))).

PROOF. From 3.1 and 3.4(b),(c) follows that the points of T(G) and
D(C(T(GS))) are the same.

Let H = 7(G). We shall prove that H= D(C(T(GS))).
Let x,y be k-adjacent points in T(G). Since V(T(G)) is the disjoint
union of V(G) and V(A(G)) we consider the following cases:

a) Let x,y € V(G). If x#y we have k arcs (x,y) and k arcs (y,x)
which do not change in T(GS). Since C does not modify these arcs
and D is the inverse of mapping s: G > G>, then x and y are k-
adjacent in p(C(T(GS))).

If x=y, there are in G k lToops incident at x which do not change
by the succesive operations which transfor G in D(C(T(G®))).

b) Let x,y € V(A(G)). From proposition D of (3], we know that
A(G) = D(C(A(G3))), so that X,y are k-adjacent in D(C(A(GS)))



and therefore in D(C(T(G®))) which is the line-disjoint union of
D(G®), D(C(A(GS))) and D(M(GS)).

c) Let x € V(G), y € V(A(G)). By 1.4 we have k=1. Then, in T(GS)
there exists an arc with initial point x and terminal point 1in
{y,y'} and another with initial point at {y,y'} and terminal
point x, if y#y' the terminal point of the first arc is different
from the initial point of the second one.

If the arcs (x,y),(y',x) belong to T(GS), in C(T(GS)) we have the
arcs (x,yo),(yo,x) and in D(C(T(GS))) x and y, are adjacents.
Since y and Y, represent the same point in T(G) and D(C(T(GS)))
we conclude that x and y are adjacent in D(C(T(GS))).

d) Let x € V(A(G)), y € V(G). The proof in this case is analogous
to the case c).

Now lTet H = D(C(T(G®))). We shall prove that H = T(G).
Let x,y be points of D(C(T(GS))). Taking into account 3.4
(c) we have the following cases: a) x,y € V(G®); b) x e V(
Y, € V(C(A(G®))) and c) x_,y, € V(C(A(G®))).

If x,y are k-adjacent in D(C(T(GS))) then:

In case a) there are k arcs (x,y) and k arcs (y,x) in C(T(G%)).

If x=y there are k loops incident at x. They are preserved in T(G?)

) and

(b
G%),

and also in G°, hence x and y are k-adjacent in G and also in T(G).

In case b), by 3.4. d) k=1 and by 3.2. Y, is obtained identif-
ying the points y and y' of T(G®). If y#y', y and y' are opposed
arcs in G°%, otherwise y is a loop. In both cases x and y are adja-
cent in G and hence in T(G).

In case c¢) by 3.4 d) k=1 or k=2. If k=1 and x=x' or y=y' in
T(GS), then in G°® at least one of them is a loop. In G, x and y
have only one common point and in T(G) they are adjacent. If k=1,
x#x' and y#y' in T(G®), then in G°® the arcs x and y have only one
common point.

The lines x and y are l-adjacent in G and so are in T(G). If k=2,

in G® the two extremal points of x and y are the same, hence in
T(G),x and y are 2-adjacentsm
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