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A REMARK ON AN APPROXIMATE FUNCTIONAL EQUATION FOR ζ (s)

PABLO PANZONE

ABSTRACT. We derive an approximate functional equation for Riemann zeta function in
the critical strip with sharp error term using a combinatorial identity.

1. INTRODUCTION

Perhaps the simplest of all approximate formulas for ζ (s), the Riemann zeta function, is

ζ (s) = ∑
n6x

1
ns −

x1−s

1− s
+O(x−σ ) ,

which holds uniformly for 0 < σ0 6 σ , |t|< 2πx
C , where C is a given constant greater than 1

(here, as usual, s = σ + it). See [3], pg. 77.
In the present note we present an approximate functional equation for ζ (s) in the critical

strip (Theorem 2) which differs from the classical one and depends on a certain combina-
torial identity (Lemma 2). Our approximate functional equation has a sharp error term but
the main term is combinatorially complicated. We give some evidence that this main term
behaves like a jump function.

No use of this functional equation is made in this note.

2. THE APPROXIMATE FUNCTIONAL EQUATION

Our main results are Theorems 1 and 2. Theorem 2 gives an approximate functional
equation with sharp error term.

Theorem 1. If s = σ + it with 0 < σ < 1 then

ζ (s) =
sin(πs)

(1−21−s)π

∫
∞

0
x−s

(
∞

∑
n=1

(2n−2)!
4n−1(2n+ x) . . .(1+ x)

{
3
2

n+
1
2

x− 1
4

})
dx. (1)

For any real number x, let [x] denote the integer part of x.

Theorem 2. Assume N = [c1t] with π

2log4 < c1. Then the following formula holds uniformly
if 0 < σ 6 σ0 < 1, t > 0:

(1−21−s)ζ (s) =
1
2

2N−1

∑
j=0

(−1) j

(1+ j)s a j,N +O(t−σ e−(c1 log4− π

2 )t),

where a j,N = ∑
N
n=[ j

2 ]+1
1

(2n−1)4n−1

(2n−1
j

)
(3n− j− 3

2).
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3. PROOFS

We need to recall

Lemma 3. Let Q(x) be a meromorphic function of x having no poles on the positive real
axis and such that xaQ(x)→ 0 both when x→ 0 and x→ ∞. Also

∫
Cρi

(−z)a−1Q(z)dz→ 0
if i→ ∞ where Cρi is a sequence of circles (squares) centered at the origin with increasing
radii (diameters) tending to infinity. Then∫

∞

0
xa−1Q(x)dx =

π

sin(πa) ∑r , (2)

where ∑r denotes the sum of the residues of (−z)a−1Q(z), and the residues in ∑r are
added according to their distance to the origin. Here (−z)a−1 = e(a−1) log(−z), where −π 6
Arg(−z) < π .

This lemma is well-known and we refer the reader to [4] pg. 117.

Proof of Theorem 1. We have
∞

∑
n=1

(−1)n−1

(n+ x)
=

∞

∑
n=1

(2n−2)!
4n−1(2n+ x) . . .(1+ x)

{
3
2

n+
1
2

x− 1
4

}
, (3)

This formula is proved in Lemma 2 below.
Let a be a real number such that 0 < a < 1

2 and let Q(x) = ∑
∞
n=1

(−1)n−1

(n+x) . It is not difficult
to show that

∫
Cρi

(−z)a−1Q(z)dz→ 0 if i→ ∞, where Cρi is the square centered at zero of
side 2i+1. Also xaQ(x)→ 0 if x→ 0. Applying Lemma 1 we obtain∫

∞

0
xa−1

(
∞

∑
n=1

(−1)n−1

(n+ x)

)
dx =

π

sin(πa)

∞

∑
n=1

(−1)n−1na−1. (4)

Setting 1− a = s = σ + it, using analytic continuation, formula (3) and ∑
∞
n=1

(−1)n−1

ns =
(1−21−s)ζ (s) (σ > 0), we arrive to formula (1). �

Lemma 4. The following identity holds
∞

∑
n=1

(−1)n−1

(n+ x)
=

∞

∑
n=1

(2n−2)!
4n−1(2n+ x) . . .(1+ x)

{
3
2

n+
1
2

x− 1
4

}
.

Proof. First we have
K

∑
k=1

b1 . . .bk−1

x(x+a1) . . .(x+ak)
(x+ak−bk) =

1
x
− b1 . . .bK

x(x+a1) . . .(x+aK)
,

which follows from writing the right hand side as A0−AK and noticing that each term on the
left is Ak−1−Ak. Replace x by (n+ x)2, ak by −k2, bk by k(1

2 − k) and K = n−1. Multiply
everything by (n + x)(−1)n−1 and add from n = 1 to N. Then b1 . . .bk−1 = (−1)k−1 (2k−2)!

4k−1

and
N

∑
n=1

(−1)n−1

(n+ x)
−

N

∑
n=1

(−1)n−1b1 . . .bn−1

(2n−1+ x) . . .(1+ x)

=
N

∑
n=1

n−1

∑
k=1

(−1)n−1

(n+ k + x) . . .(n− k + x)
b1 . . .bk−1

(
(n+ x)2− k

2

)
. (5)
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We define

εn,k(x) := (−1)n+k (2k−2)!(n+x
2 + 1

4)
4k−1(n+ k + x) . . .(n− k +1+ x)

.

Then the last formula of (5) is equal to
N

∑
n=1

n−1

∑
k=1

(εn,k(x)− εn−1,k(x)) =
N

∑
k=1

εN,k(x)−
N

∑
k=1

εk,k(x).

Now notice that ∑
N
k=1 εN,k(x)→ 0 if N→ ∞ and 0 < x < 1. Thus by analytic continuation
∞

∑
n=1

(−1)n−1

(n+ x)
=

∞

∑
n=1

(−1)n−1b1 . . .bn−1

(2n−1+ x) . . .(1+ x)
−

∞

∑
k=1

εk,k(x),

which is (3). �

To prove Theorem 2 we need the following lemma.

Lemma 5. If 16 n, −1 < σ < 1, t > 0 then
(i)∫

∞

0

x−s

(2n+ x)(2n−1+ x) . . .(1+ x)
dx =

π

(2n−1)! sin(πs)

2n−1

∑
j=0

(
2n−1

j

)
(−1) j( j +1)−s.

(ii) For the same values of n and t and with −1 < σ 6 σ0 < 1 there exists a constant
c0 = c0(σ0) (depending only on σ0) such that the absolute value of the integral in
(i) is bounded by

c0

|sin(πs)|
n1−σ etπ/2

(2n)!
.

Proof. Apply Lemma 1 to the left-hand side of (i) to obtain

π

sin(πs)

(
1−s

(2n−1)!0!
− 2−s

(2n−2)!1!
+ · · ·− (2n)−s

(2n−1)!

)
,

which is the right-hand side of (i). (ii) is proved as follows. By Lemma 1 we have to
evaluate

∫
γ

:=
∫

γ

(−z)−s

(2n+z)(2n−1+z)...(1+z)dz where γ is a positively oriented curve enclosing
−1,−2, . . . ,−2n.

Take γ to be the rectangle with vertices−ε + i2n,−2n−1+ i2n,−2n−1− i2n,−ε− i2n,
(0 < ε < 1). We parametrize γ = γ(τ),τ ∈ [0,cn] and |γ ′(τ)|= 1 with c depending on ε but
bounded for any ε . Therefore we have

|
∫

γ

|6
∫ cn

0
| (−γ(τ))−s

(2n+ γ(τ)) . . .(1+ γ(τ))
|.|γ ′(τ)|dτ 6

maxz∈γ |
1

(2n+ z) . . .(1+ z)
|
∫ cn

0
|(−γ(τ))−s|dτ,

and ∫ cn

0
|(−γ(τ))−s|dτ 6

∫ cn

0
|γ(τ)|−σ etArg(−γ(τ))dτ 6 e

tπ
2

∫ cn

0
|γ(τ)|−σ dτ.

Now we claim that maxz∈γ | 1
(2n+z)...(1+z) | 6

1
(2n)! + δ (ε) with δ (ε)→ 0 if ε → 0. This

would prove (ii). To prove the above inequality we observe that by symmetry it is enough
to compute a bound on the segments [−ε,−ε + i2n], [−2n− 1 + i2n,−ε + i2n]. For the
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first segment, it is easily seen that for any point z on it we have that | j + z| = dist(z,− j)
increases if z moves upwards on the segment. Thus the maximum is obtained on z =−ε . On
the second segment it can be seen that for any point z on it we have 2n6 |z+ j|. This shows
that there the maximum is less than 1

(2n)2n . This proves the claimed inequality. Letting ε

tend to zero we get (ii). �

Proof of Theorem 2. Write, for short, f (x,n) := 1
(2n+x)...(1+x)(

3n
2 + x

2 −
1
4). So (1) is written,

interchanging summation and integration, as

ζ (s) =
sin(πs)

(1−21−s)π

N

∑
n=1

∫
∞

0

(2n−2)!x−s f (x,n)
4n−1 dx

+
sin(πs)

(1−21−s)π

∞

∑
n=N+1

∫
∞

0

(2n−2)!x−s f (x,n)
4n−1 dx, (6)

Let N = [c1t] with π

2log4 < c1. For n > N + 1 the last sum of (6) can be estimated using ii)
of Lemma 3:

|sin(πs)|
|(1−21−s)|π

∞

∑
n=N+1

|
∫

∞

0

(2n−2)!x−s f (x,n)
4n−1 dx|6

c0

|(1−21−s)|π

∞

∑
n=N+1

(2n−2)!
4n−1 (

3n
2

n1−σ e
tπ
2

2n!
+

1
2

n1−(σ−1)e
tπ
2

2n!
+

1
4

n1−σ e
tπ
2

2n!
)

6
9c0etπ/2

|1−21−s|8π

∞

∑
n=N+1

n1−σ

(2n−1)4n−1 6 O(
etπ/2N−σ

4N ) = O(t−σ e−(c1 log4− π

2 )t)

For the first sum in (6) we use (i) of Lemma 3. �

Remark 1. From Theorem 1 one has the following curious formula:

Corollary 1. If f (s) = 1
Γ(s)

∫
∞

0 ArcTanh(1−e−x

2 )e−xxs−1dx then

−ζ (s)
(1−21−s)

2
= f (s)− f (s−1)− 1

2
(

1
1s +

1
3.2s +

1
32.3s +

1
33.4s +

1
34.5s . . .)

Hint. Recall that
∫

∞

0 e− jxxs−1dx = Γ(s) j−s for suitable s and j. Thus Lemma 3 (i) is equal
to

π

(2n−1)! sin(πs)Γ(s)

∫
∞

0
(1− e−x)2n−1e−xxs−1dx.

Using this in formula (1), interchanging summation and integration and using that
∞

∑
n=1

3n
2 −

1
4

4n−1(2n−1)
α

2n−1 = ArcTanh(
α

2
)− 3α

α2−4
,

and
∞

∑
n=1

α2n−1

4n−1(2n−1)
= 2ArcTanh(

α

2
),

we get

ζ (s) =
f (s)− f (s−1)

(1−21−s)
− 3

(1−21−s)Γ(s)

∫
∞

0

(1− e−x)e−xxs−1

(1− e−x)2−4
dx.

This formula proves the corollary after some simplifications. �
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4. ON THE COEFFICIENT a j,N

Recall the definition of a j,N , the coefficient of (−1) j

(1+ j)s in Theorem 2:

a j,N =
N

∑
n=[ j/2]+1

1
(2n−1)4n−1

(
2n−1

j

)
(3n− j−3/2).

The author noticed numerically that this coefficient behaved like a jump function. More
precisely

a j,N ≈

 2 if 06 j 6 N−2
1 if j = N−1
0 if N 6 j 6 2N−1.

Here we give some evidence of this fact. An unknown referee has kindly provided part
of the proof below.

As a0,N = 2(1− 4−N) we assume that 1 6 j. Also if n 6 [ j/2] then
(2n−1

j

)
= 0 since

j > 2n−1. Thus we write for 16 j

a j,N = 6
N

∑
n=1

1
4n

(
2n−1

j

)
−4

N

∑
n=1

1
4n

(
2n−2
j−1

)
,

where we have used that
(2n−1

j

)
= 2n−1

j

(2n−2
j−1

)
as long as 16 j.

Now we will show that

2 = a j,N +
∞

∑
n=N+1

1
(2n−1)4n−1

(
2n−1

j

)
(3n− j−3/2) = a j,N +Tail(N, j). (7)

The tail will be seen to be small in a sense explained below. But the middle formula of (7)
can be written as (curves are oriented in the usual way)

6
∞

∑
n=1

1
4n

(
2n−1

j

)
−4

∞

∑
n=1

1
4n

(
2n−2
j−1

)
=

1
2πi

(6
∞

∑
n=1

∫
|z|=1/2

(1+ z)2n−1

4nz j+1 dz−4
∞

∑
n=1

∫
|z|=1/2

(1+ z)2n−2

4nz j dz)

=
1

2πi

∫
|z|=1/2

1

4z j(1− (1+z)2

4 )

(6(1+ z)
z

−4
)
dz.

Now one deforms the curve |z| = 1/2 to |z| = r, computing the residues at z = 1,−3
(−2,0 respectively). Notice that the integral over the curve |z| = r tends to zero if r→ ∞.
This proves (7).

The evidence that our function a j,N behaves like a jump function is given by:

a) Tail(N, j) = O(1). For any fixed 0 < δ < 1, Tail(N, j)→ 0 uniformly in j if 1 6
j < Nδ and N→ ∞.

b) For any fixed 0 < δ < 1, Tail(N, j)→ 2 uniformly in j if N.(1 + δ ) < j 6 2N and
N→ ∞.
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Proof. As above the tail can be written using residues as

Tail(N, j)

= 6.
1

2πi

∫
|z|=1/2

(1+ z)2N+1

4Nz j+1(4− (1+ z)2)
dz−4.

1
2πi

∫
|z|=1/2

(1+ z)2N

4Nz j(4− (1+ z)2)
dz

= 6.S1(N, j)−4.S2(N, j).

We will compare the above integrals with the more suitable

S′1(N, j) =
1

2πi

∫
|z|= 1

2

1
4(1− z)

.
(1+ z)2N+1

4Nz j+1 dz,

S′2(N, j) =
1

2πi

∫
|z|= 1

2

1
4(1− z)

.
(1+ z)2N

4Nz j dz.

Indeed we will see that uniformly in 06 j 6 2N, i = 1,2 one has

Si(N, j)−S′i(N, j) = o(1) as N→ ∞. (8)

Also, we will prove for fixed 0 < δ < 1, i = 1,2

S′i(N, j)→ 0 uniformly in j if 16 j 6 Nδ ; N→ ∞, (9)

S′1(N, j)+S′1(N,2N− j) =
1
2

; S′2(N, j)+S′2(N,2N− j +1) =
1
4

(10)

Observe that a), b) follows from (8), (9), (10) and the fact that 06 S′i(N, j).
To prove (8) say, for i = 1, notice that

S1(N, j)−S′1(N, j) =
1

2πi

∫
γ1+γ2

g(z)
(1+ z)2N+1

4Nz j+1 dz

where g(z) is a regular function on |z|= 1; γ1 is the curve given by {|z|= 1,ε(N)6Arg(z)6
2π − ε(N)} and 0 < ε(N) is chosen so that |1 + z| 6 2(1− LogN

2N ) on γ1. Now it is not
difficult to see that ε(N) tends to zero if N → ∞. Also we denote γ2 the curve {|z| = 1,
−ε(N)6 Arg(z)6 ε(N)}; so that the length of γ2 tends to zero as N→ ∞.

Now on γ1 the above integral is by the maximum modulus principle∫
γ1

= O(
(1− LogN

2N )2N

1
) = o(1)

Now the integral over γ2 tends to zero because the length of γ2 tends to zero. This proves
S1(N, j)−S′1(N, j) = o(1) as N→ ∞. The proof for i = 2 is similar.

Now in the definition of S′1(N, j) deforming the curve |z| = 1/2 to a curve |z| = 2 and
computing the residue at z = 1 one has

S′1(N, j) =
1
2

+
1

2πi

∫
|z|=2

1
4(1− z)

.
(1+ z)2N+1

4Nz j+1 dz

This last integral is −S′1(N,2N− j) making the change of variable z = 1/w. This proves
(10) (case i = 2 is similar).

Finally to prove (9) notice that

|S′1(N, j)|= | 1
2πi

∫
|z|=r<1

1
4(1− z)

.
(1+ z)2N+1

4Nz j+1 |<<r (
(1+ r)2

4
)N 1

r j 6 (
(1+ r)2

4.rδ
)N

But ( (1+r)2

4.rδ
) < 1 for r = δ

2−δ
. Again case i = 2 is similar.
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�

Notice that S′1(N,N) = 1
4 . This follows from (10) with j = N.

I want to thank the referee for several valuable comments and suggestions which helped
to simplify the presentation of this note.
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