A REMARK ON AN APPROXIMATE FUNCTIONAL EQUATION FOR $\zeta(s)$

PABLO PANZONE

Abstract. We derive an approximate functional equation for Riemann zeta function in the critical strip with sharp error term using a combinatorial identity.

1. Introduction

Perhaps the simplest of all approximate formulas for $\zeta(s)$, the Riemann zeta function, is

$$
\zeta(s)=\sum_{n \leqslant x} \frac{1}{n^{s}}-\frac{x^{1-s}}{1-s}+O\left(x^{-\sigma}\right)
$$

which holds uniformly for $0<\sigma_{0} \leqslant \sigma,|t|<\frac{2 \pi x}{C}$, where C is a given constant greater than 1 (here, as usual, $s=\sigma+i t$). See [3], pg. 77.

In the present note we present an approximate functional equation for $\zeta(s)$ in the critical strip (Theorem 2) which differs from the classical one and depends on a certain combinatorial identity (Lemma 2). Our approximate functional equation has a sharp error term but the main term is combinatorially complicated. We give some evidence that this main term behaves like a jump function.

No use of this functional equation is made in this note.

2. THE APPROXIMATE FUNCTIONAL EQUATION

Our main results are Theorems 1 and 2. Theorem 2 gives an approximate functional equation with sharp error term.

Theorem 1. If $s=\sigma+$ it with $0<\sigma<1$ then

$$
\begin{equation*}
\zeta(s)=\frac{\sin (\pi s)}{\left(1-2^{1-s}\right) \pi} \int_{0}^{\infty} x^{-s}\left(\sum_{n=1}^{\infty} \frac{(2 n-2)!}{4^{n-1}(2 n+x) \ldots(1+x)}\left\{\frac{3}{2} n+\frac{1}{2} x-\frac{1}{4}\right\}\right) d x \tag{1}
\end{equation*}
$$

For any real number x, let $[x]$ denote the integer part of x.
Theorem 2. Assume $N=\left[c_{1} t\right]$ with $\frac{\pi}{2 \log 4}<c_{1}$. Then the following formula holds uniformly if $0<\sigma \leqslant \sigma_{0}<1, t>0$:

$$
\left(1-2^{1-s}\right) \zeta(s)=\frac{1}{2} \sum_{j=0}^{2 N-1} \frac{(-1)^{j}}{(1+j)^{s}} a_{j, N}+O\left(t^{-\sigma} e^{-\left(c_{1} \log 4-\frac{\pi}{2}\right) t}\right)
$$

where $a_{j, N}=\sum_{n=\left[\frac{j}{2}\right]+1}^{N} \frac{1}{(2 n-1) 4^{n-1}}\binom{2 n-1}{j}\left(3 n-j-\frac{3}{2}\right)$.

[^0]
3. Proofs

We need to recall
Lemma 3. Let $Q(x)$ be a meromorphic function of x having no poles on the positive real axis and such that $x^{a} Q(x) \rightarrow 0$ both when $x \rightarrow 0$ and $x \rightarrow \infty$. Also $\int_{C_{\rho_{i}}}(-z)^{a-1} Q(z) d z \rightarrow 0$ if $i \rightarrow \infty$ where $C_{\rho_{i}}$ is a sequence of circles (squares) centered at the origin with increasing radii (diameters) tending to infinity. Then

$$
\begin{equation*}
\int_{0}^{\infty} x^{a-1} Q(x) d x=\frac{\pi}{\sin (\pi a)} \sum r \tag{2}
\end{equation*}
$$

where $\sum r$ denotes the sum of the residues of $(-z)^{a-1} Q(z)$, and the residues in $\sum r$ are added according to their distance to the origin. Here $(-z)^{a-1}=e^{(a-1) \log (-z)}$, where $-\pi \leqslant$ $\operatorname{Arg}(-z)<\pi$.

This lemma is well-known and we refer the reader to [4] pg. 117.
Proof of Theorem 1. We have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+x)}=\sum_{n=1}^{\infty} \frac{(2 n-2)!}{4^{n-1}(2 n+x) \ldots(1+x)}\left\{\frac{3}{2} n+\frac{1}{2} x-\frac{1}{4}\right\} \tag{3}
\end{equation*}
$$

This formula is proved in Lemma 2 below.
Let a be a real number such that $0<a<\frac{1}{2}$ and let $Q(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+x)}$. It is not difficult to show that $\int_{C_{\rho_{i}}}(-z)^{a-1} Q(z) d z \rightarrow 0$ if $i \rightarrow \infty$, where $C_{\rho_{i}}$ is the square centered at zero of side $2 i+1$. Also $x^{a} Q(x) \rightarrow 0$ if $x \rightarrow 0$. Applying Lemma 1 we obtain

$$
\begin{equation*}
\int_{0}^{\infty} x^{a-1}\left(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+x)}\right) d x=\frac{\pi}{\sin (\pi a)} \sum_{n=1}^{\infty}(-1)^{n-1} n^{a-1} \tag{4}
\end{equation*}
$$

Setting $1-a=s=\sigma+i t$, using analytic continuation, formula (3) and $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}=$ $\left(1-2^{1-s}\right) \zeta(s)(\sigma>0)$, we arrive to formula (1).
Lemma 4. The following identity holds

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+x)}=\sum_{n=1}^{\infty} \frac{(2 n-2)!}{4^{n-1}(2 n+x) \ldots(1+x)}\left\{\frac{3}{2} n+\frac{1}{2} x-\frac{1}{4}\right\}
$$

Proof. First we have

$$
\sum_{k=1}^{K} \frac{b_{1} \ldots b_{k-1}}{x\left(x+a_{1}\right) \ldots\left(x+a_{k}\right)}\left(x+a_{k}-b_{k}\right)=\frac{1}{x}-\frac{b_{1} \ldots b_{K}}{x\left(x+a_{1}\right) \ldots\left(x+a_{K}\right)}
$$

which follows from writing the right hand side as $A_{0}-A_{K}$ and noticing that each term on the left is $A_{k-1}-A_{k}$. Replace x by $(n+x)^{2}, a_{k}$ by $-k^{2}, b_{k}$ by $k\left(\frac{1}{2}-k\right)$ and $K=n-1$. Multiply everything by $(n+x)(-1)^{n-1}$ and add from $n=1$ to N. Then $b_{1} \ldots b_{k-1}=(-1)^{k-1} \frac{(2 k-2)!}{4^{k-1}}$ and

$$
\begin{align*}
\sum_{n=1}^{N} \frac{(-1)^{n-1}}{(n+x)}-\sum_{n=1}^{N} & \frac{(-1)^{n-1} b_{1} \ldots b_{n-1}}{(2 n-1+x) \ldots(1+x)} \\
& =\sum_{n=1}^{N} \sum_{k=1}^{n-1} \frac{(-1)^{n-1}}{(n+k+x) \ldots(n-k+x)} b_{1} \ldots b_{k-1}\left((n+x)^{2}-\frac{k}{2}\right) \tag{5}
\end{align*}
$$

We define

$$
\varepsilon_{n, k}(x):=(-1)^{n+k} \frac{(2 k-2)!\left(\frac{n+x}{2}+\frac{1}{4}\right)}{4^{k-1}(n+k+x) \ldots(n-k+1+x)} .
$$

Then the last formula of (5) is equal to

$$
\sum_{n=1}^{N} \sum_{k=1}^{n-1}\left(\varepsilon_{n, k}(x)-\varepsilon_{n-1, k}(x)\right)=\sum_{k=1}^{N} \varepsilon_{N, k}(x)-\sum_{k=1}^{N} \varepsilon_{k, k}(x) .
$$

Now notice that $\sum_{k=1}^{N} \varepsilon_{N, k}(x) \rightarrow 0$ if $N \rightarrow \infty$ and $0<x<1$. Thus by analytic continuation

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+x)}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} b_{1} \ldots b_{n-1}}{(2 n-1+x) \ldots(1+x)}-\sum_{k=1}^{\infty} \varepsilon_{k, k}(x),
$$

which is (3).
To prove Theorem 2 we need the following lemma.
Lemma 5. If $1 \leqslant n,-1<\sigma<1, t>0$ then
(i)

$$
\int_{0}^{\infty} \frac{x^{-s}}{(2 n+x)(2 n-1+x) \ldots(1+x)} d x=\frac{\pi}{(2 n-1)!\sin (\pi s)} \sum_{j=0}^{2 n-1}\binom{2 n-1}{j}(-1)^{j}(j+1)^{-s} .
$$

(ii) For the same values of n and t and with $-1<\sigma \leqslant \sigma_{0}<1$ there exists a constant $c_{0}=c_{0}\left(\sigma_{0}\right)$ (depending only on σ_{0}) such that the absolute value of the integral in (i) is bounded by

$$
\frac{c_{0}}{|\sin (\pi s)|} \frac{n^{1-\sigma} e^{t \pi / 2}}{(2 n)!} .
$$

Proof. Apply Lemma 1 to the left-hand side of (i) to obtain

$$
\frac{\pi}{\sin (\pi s)}\left(\frac{1^{-s}}{(2 n-1)!0!}-\frac{2^{-s}}{(2 n-2)!1!}+\cdots-\frac{(2 n)^{-s}}{(2 n-1)!}\right)
$$

which is the right-hand side of (i). (ii) is proved as follows. By Lemma 1 we have to evaluate $\int_{\gamma}:=\int_{\gamma} \frac{(-z)^{-s}}{(2 n+z)(2 n-1+z) \ldots(1+z)} d z$ where γ is a positively oriented curve enclosing $-1,-2, \ldots,-2 n$.

Take γ to be the rectangle with vertices $-\varepsilon+i 2 n,-2 n-1+i 2 n,-2 n-1-i 2 n,-\varepsilon-i 2 n$, $(0<\varepsilon<1)$. We parametrize $\gamma=\gamma(\tau), \tau \in[0, c n]$ and $\left|\gamma^{\prime}(\tau)\right|=1$ with c depending on ε but bounded for any ε. Therefore we have

$$
\begin{aligned}
& \left|\int_{\gamma}\right| \leqslant \int_{0}^{c n}\left|\frac{(-\gamma(\tau))^{-s}}{(2 n+\gamma(\tau)) \ldots(1+\gamma(\tau))}\right| \cdot\left|\gamma^{\prime}(\tau)\right| d \tau \leqslant \\
& \quad \max _{z \in \gamma}\left|\frac{1}{(2 n+z) \ldots(1+z)}\right| \int_{0}^{c n}\left|(-\gamma(\tau))^{-s}\right| d \tau
\end{aligned}
$$

and

$$
\int_{0}^{c n}\left|(-\gamma(\tau))^{-s}\right| d \tau \leqslant \int_{0}^{c n}|\gamma(\tau)|^{-\sigma} e^{t A r g(-\gamma(\tau))} d \tau \leqslant e^{\frac{i \pi}{2}} \int_{0}^{c n}|\gamma(\tau)|^{-\sigma} d \tau .
$$

Now we claim that $\max _{z \in \gamma}\left|\frac{1}{(2 n+z) \ldots(1+z)}\right| \leqslant \frac{1}{(2 n)!}+\delta(\varepsilon)$ with $\delta(\varepsilon) \rightarrow 0$ if $\varepsilon \rightarrow 0$. This would prove (ii). To prove the above inequality we observe that by symmetry it is enough to compute a bound on the segments $[-\varepsilon,-\varepsilon+i 2 n],[-2 n-1+i 2 n,-\varepsilon+i 2 n]$. For the
first segment, it is easily seen that for any point z on it we have that $|j+z|=\operatorname{dist}(z,-j)$ increases if z moves upwards on the segment. Thus the maximum is obtained on $z=-\varepsilon$. On the second segment it can be seen that for any point z on it we have $2 n \leqslant|z+j|$. This shows that there the maximum is less than $\frac{1}{(2 n)^{2 n}}$. This proves the claimed inequality. Letting ε tend to zero we get (ii).
Proof of Theorem 2. Write, for short, $f(x, n):=\frac{1}{(2 n+x) \ldots(1+x)}\left(\frac{3 n}{2}+\frac{x}{2}-\frac{1}{4}\right)$. So (1) is written, interchanging summation and integration, as

$$
\begin{align*}
& \zeta(s)=\frac{\sin (\pi s)}{\left(1-2^{1-s}\right) \pi} \sum_{n=1}^{N} \int_{0}^{\infty} \frac{(2 n-2)!x^{-s} f(x, n)}{4^{n-1}} d x \\
&+\frac{\sin (\pi s)}{\left(1-2^{1-s}\right) \pi} \sum_{n=N+1}^{\infty} \int_{0}^{\infty} \frac{(2 n-2)!x^{-s} f(x, n)}{4^{n-1}} d x \tag{6}
\end{align*}
$$

Let $N=\left[c_{1} t\right]$ with $\frac{\pi}{2 \log 4}<c_{1}$. For $n \geqslant N+1$ the last sum of (6) can be estimated using ii) of Lemma 3:

$$
\begin{gathered}
\frac{|\sin (\pi s)|}{\left|\left(1-2^{1-s}\right)\right| \pi} \sum_{n=N+1}^{\infty}\left|\int_{0}^{\infty} \frac{(2 n-2)!x^{-s} f(x, n)}{4^{n-1}} d x\right| \leqslant \\
\frac{c_{0}}{\left|\left(1-2^{1-s}\right)\right| \pi} \sum_{n=N+1}^{\infty} \frac{(2 n-2)!}{4^{n-1}}\left(\frac{3 n}{2} \frac{n^{1-\sigma} e^{\frac{t \pi}{2}}}{2 n!}+\frac{1}{2} \frac{n^{1-(\sigma-1)} e^{\frac{t \pi}{2}}}{2 n!}+\frac{1}{4} \frac{n^{1-\sigma} e^{\frac{t \pi}{2}}}{2 n!}\right) \\
\leqslant \frac{9 c_{0} e^{t \pi / 2}}{\left|1-2^{1-s}\right| 8 \pi} \sum_{n=N+1}^{\infty} \frac{n^{1-\sigma}}{(2 n-1) 4^{n-1}} \leqslant O\left(\frac{e^{t \pi / 2} N^{-\sigma}}{4^{N}}\right)=O\left(t^{-\sigma} e^{-\left(c_{1} \log 4-\frac{\pi}{2}\right) t}\right)
\end{gathered}
$$

For the first sum in (6) we use (i) of Lemma 3.
Remark 1. From Theorem 1 one has the following curious formula:
Corollary 1. If $f(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \operatorname{ArcTanh}\left(\frac{1-e^{-x}}{2}\right) e^{-x} x^{s-1} d x$ then

$$
-\zeta(s) \frac{\left(1-2^{1-s}\right)}{2}=f(s)-f(s-1)-\frac{1}{2}\left(\frac{1}{1^{s}}+\frac{1}{3.2^{s}}+\frac{1}{3^{2} \cdot 3^{s}}+\frac{1}{3^{3} \cdot 4^{s}}+\frac{1}{3^{4} \cdot 5^{s}} \ldots\right)
$$

Hint. Recall that $\int_{0}^{\infty} e^{-j x} x^{s-1} d x=\Gamma(s) j^{-s}$ for suitable s and j. Thus Lemma 3 (i) is equal to

$$
\frac{\pi}{(2 n-1)!\sin (\pi s) \Gamma(s)} \int_{0}^{\infty}\left(1-e^{-x}\right)^{2 n-1} e^{-x} x^{s-1} d x
$$

Using this in formula (1), interchanging summation and integration and using that

$$
\sum_{n=1}^{\infty} \frac{\frac{3 n}{2}-\frac{1}{4}}{4^{n-1}(2 n-1)} \alpha^{2 n-1}=\operatorname{ArcTanh}\left(\frac{\alpha}{2}\right)-\frac{3 \alpha}{\alpha^{2}-4}
$$

and

$$
\sum_{n=1}^{\infty} \frac{\alpha^{2 n-1}}{4^{n-1}(2 n-1)}=2 \operatorname{ArcTanh}\left(\frac{\alpha}{2}\right)
$$

we get

$$
\zeta(s)=\frac{f(s)-f(s-1)}{\left(1-2^{1-s}\right)}-\frac{3}{\left(1-2^{1-s}\right) \Gamma(s)} \int_{0}^{\infty} \frac{\left(1-e^{-x}\right) e^{-x} x^{s-1}}{\left(1-e^{-x}\right)^{2}-4} d x
$$

This formula proves the corollary after some simplifications.

4. On the coefficient $a_{j, N}$

Recall the definition of $a_{j, N}$, the coefficient of $\frac{(-1)^{j}}{(1+j)^{s}}$ in Theorem 2:

$$
a_{j, N}=\sum_{n=[j / 2]+1}^{N} \frac{1}{(2 n-1) 4^{n-1}}\binom{2 n-1}{j}(3 n-j-3 / 2) .
$$

The author noticed numerically that this coefficient behaved like a jump function. More precisely

$$
a_{j, N} \approx \begin{cases}2 & \text { if } 0 \leqslant j \leqslant N-2 \\ 1 & \text { if } j=N-1 \\ 0 & \text { if } N \leqslant j \leqslant 2 N-1\end{cases}
$$

Here we give some evidence of this fact. An unknown referee has kindly provided part of the proof below.

As $a_{0, N}=2\left(1-4^{-N}\right)$ we assume that $1 \leqslant j$. Also if $n \leqslant[j / 2]$ then $\binom{2 n-1}{j}=0$ since $j>2 n-1$. Thus we write for $1 \leqslant j$

$$
a_{j, N}=6 \sum_{n=1}^{N} \frac{1}{4^{n}}\binom{2 n-1}{j}-4 \sum_{n=1}^{N} \frac{1}{4^{n}}\binom{2 n-2}{j-1}
$$

where we have used that $\binom{2 n-1}{j}=\frac{2 n-1}{j}\binom{2 n-2}{j-1}$ as long as $1 \leqslant j$.
Now we will show that

$$
\begin{equation*}
2=a_{j, N}+\sum_{n=N+1}^{\infty} \frac{1}{(2 n-1) 4^{n-1}}\binom{2 n-1}{j}(3 n-j-3 / 2)=a_{j, N}+\operatorname{Tail}(N, j) . \tag{7}
\end{equation*}
$$

The tail will be seen to be small in a sense explained below. But the middle formula of (7) can be written as (curves are oriented in the usual way)

$$
\begin{aligned}
& 6 \sum_{n=1}^{\infty} \frac{1}{4^{n}}\binom{2 n-1}{j}-4 \sum_{n=1}^{\infty} \frac{1}{4^{n}}\binom{2 n-2}{j-1} \\
& =\frac{1}{2 \pi i}\left(6 \sum_{n=1}^{\infty} \int_{|z|=1 / 2} \frac{(1+z)^{2 n-1}}{4^{n} z^{j+1}} d z-4 \sum_{n=1}^{\infty} \int_{|z|=1 / 2} \frac{(1+z)^{2 n-2}}{4^{n} z^{j}} d z\right) \\
& \quad=\frac{1}{2 \pi i} \int_{|z|=1 / 2} \frac{1}{4 z^{j}\left(1-\frac{(1+z)^{2}}{4}\right)}\left(\frac{6(1+z)}{z}-4\right) d z
\end{aligned}
$$

Now one deforms the curve $|z|=1 / 2$ to $|z|=r$, computing the residues at $z=1,-3$ ($-2,0$ respectively). Notice that the integral over the curve $|z|=r$ tends to zero if $r \rightarrow \infty$. This proves (7).

The evidence that our function $a_{j, N}$ behaves like a jump function is given by:
a) $\operatorname{Tail}(N, j)=O(1)$. For any fixed $0<\delta<1, \operatorname{Tail}(N, j) \rightarrow 0$ uniformly in j if $1 \leqslant$ $j<N \delta$ and $N \rightarrow \infty$.
b) For any fixed $0<\delta<1$, $\operatorname{Tail}(N, j) \rightarrow 2$ uniformly in j if $N .(1+\delta)<j \leqslant 2 N$ and $N \rightarrow \infty$.

Proof. As above the tail can be written using residues as
$\operatorname{Tail}(N, j)$

$$
=6 \cdot \frac{1}{2 \pi i} \int_{|z|=1 / 2} \frac{(1+z)^{2 N+1}}{4^{N} z^{j+1}\left(4-(1+z)^{2}\right)} d z-4 \cdot \frac{1}{2 \pi i} \int_{|z|=1 / 2} \frac{(1+z)^{2 N}}{4^{N} z^{j}\left(4-(1+z)^{2}\right)} d z .
$$

We will compare the above integrals with the more suitable

$$
\begin{aligned}
S_{1}^{\prime}(N, j) & =\frac{1}{2 \pi i} \int_{|z|=\frac{1}{2}} \frac{1}{4(1-z)} \cdot \frac{(1+z)^{2 N+1}}{4^{N} z^{j+1}} d z \\
S_{2}^{\prime}(N, j) & =\frac{1}{2 \pi i} \int_{|z|=\frac{1}{2}} \frac{1}{4(1-z)} \cdot \frac{(1+z)^{2 N}}{4^{N} z^{j}} d z
\end{aligned}
$$

Indeed we will see that uniformly in $0 \leqslant j \leqslant 2 N, i=1,2$ one has

$$
\begin{equation*}
S_{i}(N, j)-S_{i}^{\prime}(N, j)=o(1) \text { as } N \rightarrow \infty . \tag{8}
\end{equation*}
$$

Also, we will prove for fixed $0<\delta<1, i=1,2$

$$
\begin{gather*}
S_{i}^{\prime}(N, j) \rightarrow 0 \text { uniformly in } j \text { if } 1 \leqslant j \leqslant N \delta ; N \rightarrow \infty, \tag{9}\\
S_{1}^{\prime}(N, j)+S_{1}^{\prime}(N, 2 N-j)=\frac{1}{2} ; S_{2}^{\prime}(N, j)+S_{2}^{\prime}(N, 2 N-j+1)=\frac{1}{4} \tag{10}
\end{gather*}
$$

Observe that a), b) follows from (8), (9), (10) and the fact that $0 \leqslant S_{i}^{\prime}(N, j)$.
To prove (8) say, for $i=1$, notice that

$$
S_{1}(N, j)-S_{1}^{\prime}(N, j)=\frac{1}{2 \pi i} \int_{\gamma_{1}+\gamma_{2}} g(z) \frac{(1+z)^{2 N+1}}{4^{N} z^{j+1}} d z
$$

where $g(z)$ is a regular function on $|z|=1 ; \gamma_{1}$ is the curve given by $\{|z|=1, \varepsilon(N) \leqslant \operatorname{Arg}(z) \leqslant$ $2 \pi-\varepsilon(N)\}$ and $0<\varepsilon(N)$ is chosen so that $|1+z| \leqslant 2\left(1-\frac{\log N}{2 N}\right)$ on γ_{1}. Now it is not difficult to see that $\varepsilon(N)$ tends to zero if $N \rightarrow \infty$. Also we denote γ_{2} the curve $\{|z|=1$, $-\varepsilon(N) \leqslant \operatorname{Arg}(z) \leqslant \varepsilon(N)\}$; so that the length of γ_{2} tends to zero as $N \rightarrow \infty$.

Now on γ_{1} the above integral is by the maximum modulus principle

$$
\int_{\gamma_{1}}=O\left(\frac{\left(1-\frac{\log N}{2 N}\right)^{2 N}}{1}\right)=o(1)
$$

Now the integral over γ_{2} tends to zero because the length of γ_{2} tends to zero. This proves $S_{1}(N, j)-S_{1}^{\prime}(N, j)=o(1)$ as $N \rightarrow \infty$. The proof for $i=2$ is similar.

Now in the definition of $S_{1}^{\prime}(N, j)$ deforming the curve $|z|=1 / 2$ to a curve $|z|=2$ and computing the residue at $z=1$ one has

$$
S_{1}^{\prime}(N, j)=\frac{1}{2}+\frac{1}{2 \pi i} \int_{|z|=2} \frac{1}{4(1-z)} \cdot \frac{(1+z)^{2 N+1}}{4^{N} z^{j+1}} d z
$$

This last integral is $-S_{1}^{\prime}(N, 2 N-j)$ making the change of variable $z=1 / w$. This proves (10) (case $i=2$ is similar).

Finally to prove (9) notice that

$$
\left|S_{1}^{\prime}(N, j)\right|=\left|\frac{1}{2 \pi i} \int_{|z|=r<1} \frac{1}{4(1-z)} \cdot \frac{(1+z)^{2 N+1}}{4^{N} z^{j+1}}\right| \ll_{r}\left(\frac{(1+r)^{2}}{4}\right)^{N} \frac{1}{r^{j}} \leqslant\left(\frac{(1+r)^{2}}{4 \cdot r^{\delta}}\right)^{N}
$$

But $\left(\frac{(1+r)^{2}}{4 . r^{\delta}}\right)<1$ for $r=\frac{\delta}{2-\delta}$. Again case $i=2$ is similar.

Notice that $S_{1}^{\prime}(N, N)=\frac{1}{4}$. This follows from (10) with $j=N$.

I want to thank the referee for several valuable comments and suggestions which helped to simplify the presentation of this note.

REFERENCES

[1] Panzone P., Some series for the Riemann-Hurwitz function. Revista de la UMA, 41,2 (1998), 89-107.
[2] Panzone P., Combinatorial Sums and Series for the Riemann-Hurwitz function II. Actas del Congreso A. Monteiro V (1999), 109-125.
[3] Titchmarsh E., The theory of the Riemann Zeta-function. Oxford Science Publications, 2nd edition (1986).
[4] Whittaker E. and Watson G., A course of modern analysis. Cambridge, 4th edition (1952).
Departamento e Instituto de Matemática, Universidad Nacional del Sur, Av. Alem 1253, (8000) Bahía Blanca, Argentina

E-mail: papanzone@infovia.com.ar

[^0]: 2000 Mathematics Subject Classification. 11Mxx.
 Key words and phrases. Riemann zeta function formulae, approximate formulae.
 Supported in part by UNS and CONICET.

