A DUALITY FOR MONADIC $(n+1)$-VALUED $M V$-ALGEBRAS

MARINA BEATRIZ LATTANZI AND ALEJANDRO GUSTAVO PETROVICH

Abstract

Categorical equivalences between the varieties of monadic $(n+1)$-valued $M V$-algebras and the classes of monadic Boolean algebras endowed with certain family of their filters are given. Using these equivalences, it is proved that every monadic $(n+1)$ valued $M V$-algebra can be represented by a rich algebra.

1. Introduction and Preliminaries

Wajsberg algebras (see [7, 11, 23]) are an equivalent reformulation of Chang MValgebras based on implication instead of disjunction. $M V$-algebras were introduced by Chang [4, 5] to prove the completeness of the infinite valued Łukasiewicz propositional calculus. The classes of $(n+1)$-valued $M V$-algebras were introduced by R. Grigolia in [13], who also gave their equational characterization. For each $n>0$, this variety is generated by the chain of length $n+1$ and the algebras belonging to this variety are the algebraic models of the $(n+1)$-valued Łukasiewicz propositional calculus. Lukasiewicz 3-valued and 4 -valued algebras coincide with 3 -valued and 4 -valued $M V$-algebras, respectively.
Y. Komori [16] introduced the $C N$-algebras as algebraic models of Łukasiewicz infinite-valued propositional calculus formulated in terms of the operations implication and negation. A. J. Rodriguez [23] called Wajsberg algebras what was previously known as $C N$-algebras (see also [11]). $(n+1)$-valued Wajsberg algebras are equivalent to $(n+1)$-valued $M V$-algebras. The variety of $(n+1)$-bounded W-algebras is generated by chains of length less or equal than $n+1$. In this paper Wajsberg algebras will be used instead of MV-algebras.

For each integer $n>0$, it is shown in [19] that there exists a categorical equivalence between the variety of $(n+1)$-valued MV-algebras and the class of Boolean algebras endowed with a certain family of filters. Another similar categorical equivalence is given by A. Di Nola and A. Lettieri in [9]. In this paper, the mentioned equivalence is extended to the variety of monadic $(n+1)$-valued MV-algebras. Using this equivalence, it is proved that every monadic $(n+1)$-valued MV-algebra can be represented by a rich algebra. When $n=2$, the results given by Luiz Monteiro in [21] about the representation of monadic 3-valued Lukasiewicz algebras by rich algebras are obtained.

The basic results about $M V$-algebras can be found, for instance, in [7]. For a reformulation in the context of Wajsberg algebras (or $C N$-algebras) see [23, 11, 16].

A Wajsberg algebra (or W-algebra, for short) is an algebra $A=\langle A, \rightarrow, \neg, 1\rangle$ of type $(2,1,0)$ satisfying the following identities: $1 \rightarrow x=x,(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z))=1$, $(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$ and $(\neg y \rightarrow \neg x) \rightarrow(x \rightarrow y)=1$. The reduct $(A, \vee, \wedge, \neg, 0,1)$ is a Kleene algebra where $0=\neg 1, x \vee y=(x \rightarrow y) \rightarrow y, x \wedge y=\neg(\neg x \vee \neg y)$ and $x \leq y$ if and only if $x \rightarrow y=1$. If we set $x \oplus y=\neg y \rightarrow x$ and $x \odot y=\neg(x \rightarrow \neg y)$ then $\langle A, \oplus, \odot, 0\rangle$ is an $M V$-algebra. The set $B(A)=\{x \in A: x \odot x=x\}$ is a Boolean algebra. Indeed, $B(A)$ is the Boolean algebra of the complemented elements of the lattice reduct of A. The elements of
$B(A)$ are called the boolean elements of A. For all $x \in A$ and each non negative integer m we set:

$$
\begin{aligned}
& 0 x=0 \text { and }(m+1) x=(m x) \oplus x \\
& x^{0}=1 \text { and } x^{m+1}=\left(x^{m}\right) \odot x
\end{aligned}
$$

For every $x \in A$ and all integer $m \geq 0$, the following properties hold:
(W1) $\neg\left(x^{m}\right)=m(\neg x)$,
(W2) $(p \rightarrow q)^{m} \leq m p \rightarrow m q$.
A subset $F \subseteq A$ is an implicative filter of A if $1 \in F$ and for all $a, b \in A, a, a \rightarrow b \in F$ implies $b \in F$. Implicative filters are lattice filters which are closed by the operation \odot. The family of all implicative filters of A is an algebraic lattice under set-inclusion, and it is isomorphic to the algebraic lattice of all congruence relations on A. For every implicative filter F of A and each $x \in A$ we represent with $[x]_{F}$ the set of all elements $y \in A$ such that x and y are F-congruent. An implicative filter of A is prime if it is a lattice prime filter of A. We denote by $\chi(A)$ the set of all prime implicative filters of A. An implicative filter P of A is prime if and only if A / P is a chain.

In what follows let $n \geq 1$ be an integer.
The unit interval $[0,1]$ endowed with the operations $x \rightarrow y:=\min \{1,1-x+y\}$ and $\neg x:=1-x$ is a Wajsberg algebra. We denote by L_{n+1} the subalgebra of $[0,1]$ whose universe is $\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1\right\}$. It is verified that L_{t+1} is a subalgebra of L_{n+1} if and only if t divides n.

An $(n+1)$-bounded Wajsberg algebra A is a Wajsberg algebra which verifies $x^{n}=x^{n+1}$, for every $x \in A$.

An $(n+1)$-valued Wajsberg algebra A is an $(n+1)$-bounded Wajsberg algebra which verifies $n\left(x^{j} \oplus\left(\neg x \odot \neg x^{j-1}\right)\right)=1$, for every $x \in A$ and $1<j<n$ does not divide n.

If $\langle A, \rightarrow, \neg, 1\rangle$ is an $(n+1)$-valued Wajsberg algebra then $\left\langle A, \vee, \wedge, \neg, \sigma_{1}\right.$, $\left.\sigma_{2}, \ldots, \sigma_{n}, 0,1\right\rangle$ is an $(n+1)$-valued Łukasiewicz algebra, where the operators σ_{i}, for $1 \leq$ $i \leq n$, are defined in terms of the Wajsberg operations (see [15]).

The following results are developed in [19] and establish the equivalences mentioned above.

Let B be a Boolean algebra. We denote by $B^{[n]}$ the set of all increasing monotone functions from $\{1,2, \ldots, n\}$ into $B . B^{[n]}$ with the operations of the lattice defined pointwise, the chain of constants $0=c_{0}<c_{1}<\ldots<c_{n-1}<c_{n}=1$ where, for each $0 \leq k \leq n, c_{k}(i)$ is equal to 1 if $i \geq n+1-k$ and equal to 0 otherwise, the negation defined by $(\neg f)(i)=\neg f(n+1-i)$ for each $1 \leq i \leq n$ and the modal operators $\sigma_{i}(f)(j)=f(i)$ for all $1 \leq i \leq n$ and $1 \leq j \leq n$, is a Post algebra of order $n+1$ [2]; therefore it is an $(n+1)$-valued Wajsberg algebra [24]. In Theorem 1.1 a direct proof of this results is given, showing explicitly the form of operations. In every $(n+1)$-valued Wajsberg algebra, the prime filters occur in finite and disjoint chains, then by the Martínez's Unicity Theorem [20] the implication is determined by the order.

Theorem 1.1. [19] Let B be a Boolean algebra and $n \geq 1$ be an integer. Then $\left\langle B^{[n]}, \mapsto, \neg, \mathbb{I}\right\rangle$ is an $(n+1)$-valued Wajsberg algebra where $B^{[n]}=$
$\{f:\{1,2, \ldots, n\} \longrightarrow B: f(i) \leq f(j)$ for all i, j such that $i \leq j\}, \mathbb{I}$ is the constant function equal to 1 and, for $f, g \in B^{[n]}$ and $1 \leq k \leq n,(\neg f)(k)=\neg f(n+1-k)$ and $(f \mapsto g)(k)=$ $\bigwedge_{i=1}^{n-k+1}(f(i) \rightarrow g(i+k-1))$.

Remark 1.1. We denote by $\operatorname{Div}(n)$ the set of all positive divisors of n. Let $d \in \operatorname{Div}(n)$. For each integer $j, 1 \leq j \leq n$, there exists an only integer $q_{d, j}, 1 \leq q_{d, j} \leq d$, such that $\left(q_{d, j}-1\right) \frac{n}{d}<j \leq q_{d, j} \frac{n}{d}$. Indeed, $q_{d, j}$ is the first element of the set $X=\{q \in \mathbb{N}: 1 \leq q \leq$ $\left.d, j \leq q \frac{n}{d}\right\}$. That is to say that the only block corresponding to the divisor d of n that contains j is that determined by $q_{d, j}$. Thus, for any $d \in \operatorname{Div}(n)$, we can think an n-tuple to be composed by d blocks, each one of them with $\frac{n}{d}$ elements.

In what follows, for each $f \in B^{[n]}, d \in \operatorname{Div}(n)$ and any integer $1 \leq q \leq d$, we shall write $\xi_{d, q}(f)$ instead of $f\left(q \frac{n}{d}\right) \rightarrow f\left((q-1) \frac{n}{d}+1\right)$.

Corollary 1.1. [19] Let B be a Boolean algebra, let $n \geq 1$ be an integer and let h be a function from the lattice of divisors of n into the lattice of filters of B. The set $\{f \in$ $B^{[n]}: \xi_{d, q}(f) \in h(d)$, for each $d \in \operatorname{Div}(n)$ and all $\left.1 \leq q \leq d\right\}$ is denoted by $M(B, h)$. Then $\langle M(B, h), \mapsto, \neg, \mathbb{I}\rangle$ is an $(n+1)$-valued Wajsberg subalgebra of $B^{[n]}$. Also, if $h(d)=B$ for each $d \in D=\operatorname{Div}(n)-\{n\}$ then $M(B, h)$ is a Post algebra of order $n+1$.

Theorem 1.2. [19] Let $\langle A, \rightarrow, \neg, 1\rangle$ be an $(n+1)$-valued Wajsberg algebra. For each $d \in$ $\operatorname{Div}(n)$ let $h_{A}(d)=P_{d} \cap B(A)$, where $P_{d}=\bigcap\left\{P \in \chi(A): A / P \subseteq L_{d+1}\right\}$. Then $\varphi: A \longrightarrow$ $M\left(B(A), h_{A}\right)$ is a W-isomorphism, being $\varphi(x)(i)=\sigma_{i}(x)$ for all $x \in A$ and every integer $1 \leq i \leq n$.

Definition 1.1. (a) A pair $\langle B, h\rangle \in B^{n+1}$ if B is a Boolean algebra and h is a function from the lattice of divisors of n into the lattice of filters of B such that $h(n)=\{1\}$ and $h(g c d\{d, r\})=$ $h(d) \vee h(r)$, for every $d, r \in \operatorname{Div}(n)(g c d\{d, r\}$ is the greatest common divisor of the set $\{d, r\}$).
(b) Objects $\left\langle B_{1}, h_{1}\right\rangle$ and $\left\langle B_{2}, h_{2}\right\rangle$ in B^{n+1} are isomorphic if there exists a boolean isomorphism $\varphi: B_{1} \longrightarrow B_{2}$ which verifies $\varphi^{-1}\left(h_{2}(d)\right)=h_{1}(d)$ for all $d \in \operatorname{Div}(n)$.

Remark 1.2. Let $\langle A, \rightarrow, \neg, 1\rangle$ be an $(n+1)$-valued Wajsberg algebra. Then $\left\langle B(A), h_{A}\right\rangle \in$ B^{n+1}, where $h_{A}(d)=P_{d} \cap B(A)$ being $P_{d}=\bigcap\left\{P \in \chi(A): A / P \subseteq L_{d+1}\right\}$, for each $d \in \operatorname{Div}(n)$.

Theorem 1.3. [19] Let $\langle B, h\rangle \in B^{n+1}$ and let $A=M(B, h)$. Then $\langle B, h\rangle$ and $\left\langle B(A), h_{A}\right\rangle$ are isomorphic objects in B^{n+1}.

Let \mathscr{W}^{n+1} be the category of $(n+1)$-valued W-algebras and W-homomorphisms. Let \mathscr{B}^{n+1} be the category whose objects are pairs in B^{n+1} and whose morphisms are defined in the following way: if $O_{1}=\left\langle B_{1}, h_{1}\right\rangle$ and $O_{2}=\left\langle B_{2}, h_{2}\right\rangle$ are objects in this category, θ is a morphism from O_{1} into O_{2} if it is a boolean homomorphism from B_{1} into B_{2} which verifies $h_{1}(d) \subseteq \theta^{-1}\left(h_{2}(d)\right)$ for any $d \in \operatorname{Div}(n)$.

It is easy to see that θ is an isomorphism from O_{1} onto O_{2} if it is a boolean isomorphism from B_{1} onto B_{2} which verifies $h_{1}(d)=\theta^{-1}\left(h_{2}(d)\right)$ for each $d \in \operatorname{Div}(n)$.

Let B be the functor from \mathscr{W}^{n+1} to \mathscr{B}^{n+1} defined in the following way:
(i) For each object $\mathscr{A}=\langle A, \rightarrow, \neg, 1\rangle$ in $\mathscr{W}^{n+1}, B(\mathscr{A})=\left\langle B(A), h_{A}\right\rangle$, where $B(A)$ is the set of boolean elements of A and for all d divisor of $n, h_{A}(d)=P_{d} \cap B(A)$, being $P_{d}=\bigcap\{P \in$ $\left.\chi(A): A / P \subseteq L_{d+1}\right\}$.
(ii) If \mathscr{A}_{1} and \mathscr{A}_{2} are objects in the category \mathscr{W}^{n+1} and $g: \mathscr{A}_{1} \longrightarrow \mathscr{A}_{2}$ is a \mathscr{W}^{n+1} morphism, $B(g):\left\langle B\left(A_{1}\right), h_{A_{1}}\right\rangle \longrightarrow\left\langle B\left(A_{2}\right), h_{A_{2}}\right\rangle$ is defined by $B(g)=g /_{B\left(A_{1}\right)}$.

Let M be the functor from \mathscr{B}^{n+1} to \mathscr{W}^{n+1} defined in the following way:
(i) For each object $\langle B, h\rangle$ in \mathscr{B}^{n+1}, let $M(\langle B, h\rangle)=\langle M(B, h), \mapsto, \neg, \mathbb{I}\rangle$.
(ii) If $\left\langle B_{1}, h_{1}\right\rangle$ and $\left\langle B_{2}, h_{2}\right\rangle$ are objects in the category \mathscr{B}^{n+1} and g is a \mathscr{B}^{n+1}-morphism from $\left\langle B_{1}, h_{1}\right\rangle$ into $\left\langle B_{2}, h_{2}\right\rangle$ let $M(g): M\left(B_{1}, h_{1}\right) \longrightarrow M\left(B_{2}, h_{2}\right)$ where $M(g)(f)=g \circ f$, for any $f \in M\left(B_{1}, h_{1}\right)$.

From Theorems 1.2 and 1.3 the functors B and M define a natural equivalence between the categories \mathscr{W}^{n+1} and \mathscr{B}^{n+1}.

Monadic $(n+1)$-valued W-algebras [25, 26, 12, 10, 1] are defined as follows.
Definition 1.2. An algebra $\langle A, \rightarrow, \neg, \forall, 1\rangle$ is a monadic Wajsberg algebra if $\langle A, \rightarrow, \neg, 1\rangle$ is a Wajsberg algebra and $\forall: A \longrightarrow A$ is a function which verifies the following identities:
(U1) $\forall x \rightarrow x=1$,
(U2) $\forall(\forall x \rightarrow y)=\forall x \rightarrow \forall y$,
(U3) $\forall(\neg x \rightarrow x)=\neg \forall x \rightarrow \forall x$.
Observe that identity U3 can be write $\forall(2 x)=2 \forall x$.
Let $\langle A, \rightarrow, \neg, \forall, 1\rangle$ be a monadic Wajsberg algebra. Often we will write A or $\langle A, \forall\rangle$ instead of $\langle A, \rightarrow, \neg, \forall, 1\rangle$. If $X \subseteq A, \forall(X)=\{\forall x: x \in X\}$. Algebras $\forall(A)$ and $B(A)$ are monadic Wajsberg subalgebras of A. In particular $\langle B(A), \forall\rangle$ is a monadic Boolean algebra. For all $x, y \in A$ and all integer $m \geq 0$, the following properties hold:
(U4) $\forall \forall x=\forall x$,
(U5) $x \leq y$ implies $\forall x \leq \forall y$,
(U6) $\forall(x \wedge y)=\forall x \wedge \forall y$,
(U7) $\forall(x \rightarrow y) \leq \forall x \rightarrow \forall y$,
(U8) $\forall \neg \forall x=\neg \forall x$,
(U9) $\forall(x \odot \forall y)=\forall x \odot \forall y$,
(U10) $\quad(\forall x)^{m} \leq \forall\left(x^{m}\right)$.

Definition 1.3. A monadic Wajsberg algebra $\langle A, \rightarrow, \neg, \forall, 1\rangle$ is a monadic $(n+1)$-valued Wajsberg algebra (MW ${ }^{n+1}$-algebra, for short) if $\langle A, \rightarrow, \neg, 1\rangle$ is an $(n+1)$ valued Wajsberg algebra.

The varieties of monadic $(n+1)$-valued Wajsberg algebras will be denoted by $\mathbf{M} W^{\mathbf{n + 1}}$.
In [18] the classes of $(n+1)$-bounded Wajsberg algebras with a U-operator (or $U W_{n+1^{-}}$ algebras) are defined as $(n+1)$-bounded Wajsberg algebras with an operator which verifies the properties (U1) and (U2). With $\mathbf{U W}_{\mathbf{n}+\mathbf{1}}$ we denote the varieties of $(n+1)$-bounded Wajsberg algebras with a U-operator.
Lemma 1.1. $\mathbf{M} \mathbf{W}^{\mathbf{n}+\mathbf{1}} \subseteq \mathbf{U W}_{\mathbf{n}+\mathbf{1}}$, for all $n \geq 1$.
Remark 1.3. (i) If $\langle A, \rightarrow, \neg, \forall, 1\rangle$ is a monadic Wajsberg algebra then $\langle A, \oplus, \odot$, $\neg, \exists, 0,1\rangle$ is a monadic $M V$-algebra (see [10, 1, 25, 12]) where for each $x \in A, \exists x=\neg \forall \neg x$.
(ii) If $\langle A, \oplus, \odot, \neg, \exists, 0,1\rangle$ is a monadic $M V$-algebra then $\langle A, \rightarrow, \neg, \forall, 1\rangle$ is a monadic Wajsberg algebra where for each $x \in A, \forall x=\neg \exists \neg x$.

Theorem 1.4. [10, Corollary 14] If $\langle A, \forall\rangle$ is a totally ordered monadic Wajsberg algebra, then \forall is the identity.

The following result is consequence of [18, Theorem 2.2] and Lemma 1.1.
Lemma 1.2. The variety $\mathbf{M W}^{\mathbf{n}+\mathbf{1}}$ is semisimple.
Theorem 2.3 in [18] for $U W_{n+1}$-algebras yields the following result in the class of monadic $(n+1)$-valued Wajsberg algebras.
Theorem 1.5. Let A be a non trivial $M W^{n+1}$-algebra. Then A is a simple $M W^{n+1}$-algebra if, and only if, $\forall(A)$ is a simple $(n+1)$-valued Wajsberg algebra if, and only if, $\forall(A) \cap B(A)$ is simple Boolean algebra.

The following properties hold for every non trivial Wajsberg algebra A.
(P1) A is a simple $(n+1)$-valued Wajsberg algebra if and only if A is isomorphic to L_{r+1} for some integer $r \geq 1, r$ divisor of n.
(P2) A is an $(n+1)$-valued Wajsberg algebra if and only if A can be represented (as subdirect product) in $\prod_{i / n} L_{i+1}^{\chi_{i+1}}$, where $\chi_{i+1}=\left\{D \in \chi(A): A / D \simeq L_{i+1}\right\}$.

Corollary 1.2. $\left\langle L_{n+1}^{I}, \forall\right\rangle$ is a simple $M W^{n+1}$-algebra, where I is a nonempty set and for each $f: I \longrightarrow L_{n+1}, \forall f$ is the constant function defined by $(\forall f)(x)=\inf \{f(x): x \in I\}$.
Theorem 1.6. If A is a simple $M W^{n+1}$-algebra, then it is isomorphic to a subalgebra of $\left\langle L_{n+1}^{I}, \forall\right\rangle$, for some nonempty set I.
Proof. The proof is a special case of Theorem 2.4 in [18] using Theorem 1.5, properties (P1) and (P2), Corollary 1.2 and Theorem 1.4 .
Corollary 1.3. Let $\langle A, \forall\rangle$ be an $M W^{n+1}$-algebra. Then $\forall(k x)=k \forall x$ for every $x \in A$ and all integer $1 \leq k \leq n$.
Proof. It is easy to prove that the identities are valid in a simple $M W^{n+1}$-algebra; so they are valid in all $M W^{n+1}$-algebra, follows from Lemma 1.2 .
Lemma 1.3. Let $\langle A, \forall\rangle$ be an $M W^{n+1}$-algebra. Then for every $x \in A$ the following properties hold:
(U11) $\forall\left(x^{k}\right)=(\forall x)^{k}$, for each integer $1 \leq k \leq n$,
(U12) $\left.\forall\left(\sigma_{i}(x)\right)=\sigma_{i}(\forall x)\right)$, for every $i \in\{1,2, \ldots, n\}$.
Proof. (U11) follows from properties W1, W2, U5, U8, U9 and U10. (U12) follows from Corollary 1.3, U11 and [15, Theorem 5.23].

It is proved in [12] that monadic $(n+1)$-valued $M V$-algebras are polynomially equivalent to monadic $(n+1)$-valued Łukasiewicz algebras for $n=2$ and $n=3$, respectively.

2. THE DUALITY FOR MONADIC $(n+1)$-VALUED WAJSBERG ALGEBRAS

Theorem 2.1. Let $\langle B, \forall\rangle$ be a monadic Boolean algebra and $n \geq 1$ be an integer. Then $\left\langle B^{[n]}, \mapsto, \neg, \mathbb{V}, \mathbb{I}\right\rangle$ is a monadic $(n+1)$-valued Wajsberg algebra where $B^{[n]}=\{f:\{1,2, \ldots, n\}$ $\longrightarrow B: f(i) \leq f(j)$ for all i, j such that $i \leq j\}, \mathbb{I}$ is the constant function equal to 1 and, for $f, g \in B^{[n]}$ and $1 \leq k \leq n,(\neg f)(k)=\neg f(n+1-k),(f \mapsto g)(k)=\bigwedge_{i=1}^{n-k+1}(f(i) \rightarrow g(i+k-1))$ and $(\mathbb{V} f)(i)=\forall(f(i))$.

Proof. From Theorem $1.1\left\langle B^{[n]}, \mapsto, \neg, \mathbb{I}\right\rangle$ is an $(n+1)$-valued Wajsberg algebra. Moreover, for every $f, g \in B^{[n]}$ and integers $i, k, 1 \leq i, k \leq n$, the following properties hold:
(1) $\mathbb{V} f \leq f$

$$
(\mathbb{V} f)(i)=\forall f(i) \leq f(i)
$$

(2)

$$
\begin{aligned}
& (\mathbb{V}(f \mapsto \mathbb{V} g))(k)=\forall((f \mapsto \mathbb{V} g)(k))=\forall\left(\bigwedge_{i=1}^{n-k+1}(f(i) \rightarrow(\mathbb{V} g)(i+k-1))\right) \\
= & \forall\left(\bigwedge_{i=1}^{n-k+1}(f(i) \rightarrow \forall(g(i+k-1)))=\bigwedge_{i=1}^{n-k+1} \forall(f(i) \rightarrow \forall(g(i+k-1)))\right. \\
= & \left.\bigwedge_{i=1}^{n-k+1}(\forall(f(i)) \rightarrow \forall(g(i+k-1)))=\bigwedge_{i=1}^{n-k+1}((\mathbb{V} f)(i) \rightarrow(\mathbb{V} g)(i+k-1))\right) \\
= & (\mathbb{V} f \mapsto \mathbb{V} g)(k) .
\end{aligned}
$$

(3) $\mathbb{V}(\neg f \mapsto f)=\neg \mathbb{V} f \mapsto \mathbb{V} f$.

$$
\begin{align*}
(\mathbb{V}(\neg f \mapsto f))(k) & =\forall((\neg f \mapsto f)(k)) \\
& =\forall\left(\bigwedge_{i=1}^{n-k+1}(\neg f(n+1-i) \rightarrow f(i+k-1))\right) \\
& =\bigwedge_{i=1}^{n-k+1} \forall(f(n+1-i) \vee f(i+k-1)) . \tag{1}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& \quad(\neg \mathbb{V} f \mapsto \mathbb{V} f)(k)=\bigwedge_{i=1}^{n-k+1}(\neg(\mathbb{V} f)(n+1-i) \rightarrow(\mathbb{V} f)(i+k-1))= \\
& \bigwedge_{i=1}^{n-k+1}(\forall f(n+1-i) \vee \forall f(i+k-1)) . \tag{2}
\end{align*}
$$

If $i \leq\left\lfloor\frac{n-k}{2}\right\rfloor(\lfloor x\rfloor$ denotes the largest integer less or equal to x, for a real number x) then $i+k-1 \leq n+1-i$ and the equality follows from (1), (2) and U5. Similarly if $i>\left\lfloor\frac{n-k}{2}\right\rfloor$ because $n+1-i \leq i+k-1$.

Remark 2.1. Let $\langle B, \forall\rangle$ be a monadic Boolean algebra. Algebras $(\forall(B))^{[n]}$ and $\mathbb{V}\left(B^{[n]}\right)$ are isomorphic algebras. Indeed, $(\forall(B))^{[n]}=\{f:\{1,2, \ldots, n\} \longrightarrow \forall(B): f(i) \leq f(j)$ for all i, j such that $i \leq j\}$ and $\mathbb{V}\left(B^{[n]}\right)=\left\{f \in B^{[n]}: \mathbb{V} f=f\right\}=\left\{f \in B^{[n]}: \forall(f(i))=f(i)\right.$, for all $i \in$ $\{1,2, \ldots n\}\}$. It is clear that $f \in(\forall(B))^{[n]}$ if and only if f is an increasing function from the set $\{1,2, \ldots, n\}$ into B such that $f(i) \in \forall(B)$ for every $1 \leq i \leq n$; if and only if $f \in B^{[n]}$ and $\forall(f(i))=f(i)$ for every $1 \leq i \leq n$; if and only if $f \in \mathbb{V}\left(B^{[n]}\right)$.

Corollary 2.1. Let $\langle B, \forall\rangle$ be a monadic Boolean algebra, $n \geq 1$ be an integer and h^{M} be a function from the lattice of divisors of n into the lattice of monadic filters of B. Let $M\left(B, h^{M}\right)$ be the set $\left\{f \in B^{[n]}: f\left(q \frac{n}{d}\right) \rightarrow f\left((q-1) \frac{n}{d}+1\right) \in h^{M}(d)\right.$, for each $d \in \operatorname{Div}(n)$ and all $1 \leq q \leq$ $d\}$. Then $\left\langle M\left(B, h^{M}\right), \mapsto, \neg, \mathbb{V}, \mathbb{I}\right\rangle$ is a monadic $(n+1)$-valued Wajsberg subalgebra of $B^{[n]}$.
Proof. From Corollary 1.1 we only shall prove that \mathbb{V} is closed into $M\left(B, h^{M}\right)$. Let $f \in$ $M\left(B, h^{M}\right)$, then $f\left(q \frac{n}{d}\right) \rightarrow f\left((q-1) \frac{n}{d}+1\right) \in h^{M}(d)$, for every $d \in \operatorname{Div}(n)$ and all integer q, $1 \leq q \leq d$. Since $h^{M}(d)$ is a monadic filter, using U7 we have $(\mathbb{V} f)\left(q_{d}^{n}\right) \rightarrow(\mathbb{V} f)\left((q-1) \frac{n}{d}+\right.$ $1)=\forall\left(f\left(q \frac{n}{d}\right)\right) \rightarrow \forall\left(f\left((q-1) \frac{n}{d}+1\right)\right) \geq \forall\left(f\left(q_{d}^{n}\right) \rightarrow f\left((q-1) \frac{n}{d}+1\right)\right)$; then $\mathbb{V} f \in M\left(B, h^{M}\right)$.

Remark 2.2. Let $\langle B, \forall\rangle$ be a monadic Boolean algebra, $n \geq 1$ be an integer and h^{M} be a function from the lattice of divisors of n into the lattice of monadic filters of B. Then, for each $f \in M\left(B, h^{M}\right), \mathbb{V} f$ is the last element of the set $\left.(f] \cap M\left(B, h^{M}\right) \cap(\forall(B))\right)^{[n]}$.

Corollary 2.2. Let $\langle B, \forall\rangle$ be a monadic Boolean algebra, $n \geq 1$ be an integer and h be a function from the lattice of divisors of n into the lattice of filters of B. Then $\langle M(B, h), \mapsto$ $, \neg, \mathbb{V}, \mathbb{I}\rangle$ is a monadic $(n+1)$-valued Wajsberg algebra where $(\mathbb{V} f)(i)=\forall(f(i))$, for each $f \in M(B, h)$ and $1 \leq i \leq n$.

Proof. Let $\langle B, \forall\rangle$ be a monadic Boolean algebra. If F be a filter of B, then $\forall^{-1} F$ is a monadic filter of B and $\forall^{-1} F \subseteq F$. Moreover, $\forall^{-1} F$ is maximal among all the monadic filters of B included in F. Let h^{M} be the function from the lattice of divisors of n into the lattice of monadic filters of B defined by $h^{M}(d)=\forall^{-1} h(d)$, for each $d \in \operatorname{Div}(n)$. From Corollary 2.1 and Remark 2.2 we have that $\left\langle M\left(B, h^{M}\right), \mapsto, \neg, \mathbb{V}, \mathbb{I}\right\rangle$ is a monadic $(n+1)$ valued Wajsberg algebra where, for each $f \in M\left(B, h^{M}\right), \mathbb{V} f$ is the last element of the set $(f] \cap M\left(B, h^{M}\right) \cap(\forall(B))^{[n]}$. Moreover, $\left\langle M\left(B, h^{M}\right), \mapsto, \neg, \mathbb{I}\right\rangle$ is a W-subalgebra of $\langle M(B, h), \mapsto$ $, \neg, \mathbb{I}\rangle$ because for every $f \in M\left(B, h^{M}\right)$ is $f\left(q \frac{n}{d}\right) \rightarrow f\left((q-1) \frac{n}{d}+1\right) \in h^{M}(d) \subseteq h(d)$, for each $d \in \operatorname{Div}(n)$ and all $1 \leq q \leq d$. Let $f \in M(B, h)$; then $\mathbb{V} f$ is the last element of the set $(f] \cap M\left(B, h^{M}\right) \cap(\forall(B))^{[n]}$ because, if there exists $g \in M(B, h)$ such that $g \leq f$ and $g \in M\left(B, h^{M}\right) \cap(\forall(B))^{[n]}$, then $g=\mathbb{V} g \leq \mathbb{V} f$. Therefore \mathbb{V} is the quantifier onto $M(B, h)$ determined by the subalgebra $M\left(B, h^{M}\right) \cap(\forall(B))^{[n]}$.

Theorem 2.2. Let $\langle A, \rightarrow, \neg, \forall, 1\rangle$ be a monadic $(n+1)$-valued Wajsberg algebra. Let h_{A} be the function from the lattice of divisors of n into the lattice of filters of $B(A)$ where, for each $d \in \operatorname{Div}(n), h_{A}(d)=P_{d} \cap B(A)$, being $P_{d}=\bigcap\left\{P \in \chi(A): A / P \subseteq L_{d+1}\right\}$. Then $\left\langle M\left(B(A), h_{A}\right), \mapsto, \neg, \mathbb{V}, \mathbb{I}\right\rangle$ and $\langle A, \rightarrow, \neg, \forall, 1\rangle$ are isomorphic monadic $(n+1)$-valued Wajsberg algebras.

Proof. From Theorem 1.2 the function $\varphi: A \longrightarrow M\left(B(A), h_{A}\right)$ is a W-isomorphism, being $\varphi(x)(i)=\sigma_{i}(x)$ for all $x \in A$ and every integer $1 \leq i \leq n$; moreover, $\mathbb{V} \varphi(x)=\varphi(\forall x)$ because from U12 we have $(\mathbb{V} \varphi(x))(i)=\forall(\varphi(x)(i))=\forall\left(\sigma_{i}(x)\right)=\sigma_{i}(\forall x)=(\varphi(\forall x))(i)$.

Definition 2.1. (i) A 3-tuple $\langle B, \forall, h\rangle \in M B^{n+1}$ if $\langle B, \forall\rangle$ is a monadic Boolean algebra and h is a function from the lattice of divisors of n into the lattice of filters of B such that $h(n)=\{1\}$ and $h(g c d\{d, r\})=h(d) \vee h(r)$, for every $d, r \in \operatorname{Div}(n)(g c d\{d, r\}$ is the greatest common divisor of the set $\{d, r\}$).
(ii) 3-tuples $\left\langle B_{1}, \forall_{1}, h_{1}\right\rangle$ and $\left\langle B_{2}, \forall_{2}, h_{2}\right\rangle$ in $M B^{n+1}$ are isomorphic if there exists a monadic boolean isomorphism $\varphi: B_{1} \longrightarrow B_{2}$ which verifies $\varphi^{-1}\left(h_{2}(d)\right)=h_{1}(d)$ for all $d \in$ $\operatorname{Div}(n)$.

Remark 2.3. Let $\langle A, \rightarrow, \neg, \forall, 1\rangle$ be a monadic $(n+1)$-valued Wajsberg algebra. Then $\left\langle B(A), \forall, h_{A}\right\rangle \in M B^{n+1}$, where, for each $d \in \operatorname{Div}(n), h_{A}(d)=P_{d} \cap B(A)$ being $P_{d}=\cap\{P \in$ $\left.\chi(A): A / P \subseteq L_{d+1}\right\}$.

Theorem 2.3. Let $\langle B, \forall, h\rangle \in M B^{n+1}$ and let $A=M(B, h)$. Then $\langle B, \forall, h\rangle$ and $\left\langle B(A), \mathbb{V}, h_{A}\right\rangle$ are isomorphic objects in $M B^{n+1}$.

Proof. Let $\langle B, \forall, h\rangle \in M B^{n+1}$ and $A=M(B, h)$. By Corollary 2.2 we know that $\langle A, \mapsto$ $, \neg, \mathbb{V}, \mathbb{I}\rangle$ is a monadic $(n+1)$-valued Wajsberg algebra where $(\mathbb{V} f)(i)=\forall(f(i))$, for all $f \in A$ and every integer $1 \leq i \leq n$.

It is easy to see that $B(A)$ is the subalgebra that consist of all constant functions. If h_{A} is the function from the lattice of divisors of n into the lattice of filters of $B(A)$ defined by $h_{A}(d)=P_{d} \cap B(A)$, being $P_{d}=\bigcap\left\{P \in \chi(A): A / P \subseteq L_{d+1}\right\}$, then $\left\langle B(A), \mathbb{V}, h_{A}\right\rangle \in M B^{n+1}$ (because Remark 2.3).

Let $\mu: B \longrightarrow B(A)$ such that $\mu(a)$ is the constant function from $\{1,2, \ldots, n\}$ into B that takes the value a, for each $a \in B$. In [19, Theorem 3] it is prove that μ is a boolean isomorphism from B onto $B(A)$ which verifies $\mu^{-1}\left(P_{d} \cap B(A)\right)=h(d)$, for each $d \in \operatorname{Div}(n)$. Moreover, for each $x \in B$ and all $i \in\{1,2, \ldots n\}$, it is $(\mu(\forall x))(i)=\forall x=\forall(\mu(x)(i))=$ $(\mathbb{V} \mu(x))(i)$.

Let $\mathscr{M} \mathscr{W}^{n+1}$ be the category of monadic $(n+1)$-valued W-algebras and monadic W homomorphisms. Let $\mathscr{M} \mathscr{B}^{n+1}$ be the category whose objects are the 3-tuples in $M B^{n+1}$ and whose morphisms are defined in the following way: if $O_{1}=\left\langle B_{1}, \forall_{1}, h_{1}\right\rangle$ and $O_{2}=$ $\left\langle B_{2}, \forall_{2}, h_{2}\right\rangle$ are objects in this category, θ is a morphism from O_{1} into O_{2} if it is a monadic boolean homomorphism from B_{1} into B_{2} which verifies $h_{1}(d) \subseteq \theta^{-1}\left(h_{2}(d)\right)$ for any $d \in$ $\operatorname{Div}(n)$.

It is easy to see that θ is an isomorphism from O_{1} onto O_{2} if it is a monadic boolean isomorphism from B_{1} onto B_{2} which verifies $h_{1}(d)=\theta^{-1}\left(h_{2}(d)\right)$ for each $d \in \operatorname{Div}(n)$.

Let B be defined from $\mathscr{M} \mathscr{W}^{n+1}$ to $\mathscr{M} \mathscr{B}^{n+1}$ as follows:
(i) For each object $\mathscr{A}=\langle A, \rightarrow, \neg, \forall, 1\rangle$ in the category $\mathscr{M}^{2} \mathscr{W}^{n+1}, B(\mathscr{A})=\left\langle B(A), \forall, h_{A}\right\rangle$, where $B(A)$ is the set of boolean elements of A and for all d divisor of $n, h_{A}(d)=P_{d} \cap B(A)$, being $P_{d}=\bigcap\left\{P \in \chi(A): A / P \subseteq L_{d+1}\right\}$.
(ii) If \mathscr{A}_{1} and \mathscr{A}_{2} are objects in the category $\mathscr{M} \mathscr{W}^{n+1}$ and $g: \mathscr{A}_{1} \longrightarrow \mathscr{A}_{2}$ is an $\mathscr{M} \mathscr{W}^{n+1}$ morphism, $B(g):\left\langle B\left(A_{1}\right), \forall_{1}, h_{A_{1}}\right\rangle \longrightarrow\left\langle B\left(A_{2}\right), \forall_{2} h_{A_{2}}\right\rangle$ is defined by $B(g)=g /_{B\left(A_{1}\right)}$.

It is immediate that $B(g)$ is a monadic boolean homomorphism. Moreover, $B(g)$ is an $\mathscr{M} \mathscr{B}^{n+1}$-morphism. Indeed, let $a \in h_{A_{1}}(d)$. If $a \notin B(g)^{-1}\left(h_{A_{2}}(d)\right)$ then $g(a) \notin h_{A_{2}}(d)$, hence there exists a prime implicative filter P of A_{2} such that $A_{2} / P \subseteq L_{d+1}$ and $g(a) \notin P$. Thus $a \notin g^{-1}(P) \cap B\left(A_{1}\right)$. The function $v: A_{1} / g^{-1}(P) \longrightarrow A_{2} / P$ defined by $v\left([x]_{g^{-1}(P)}\right)=$ $[g(x)]_{P}$ is an embedding from $A_{1} / g^{-1}(P)$ into $A_{2} / P \subseteq L_{d+1}$, i.e., $A_{1} / g^{-1}(P) \subseteq L_{d+1}$ then $a \notin h_{A_{1}}(d)$ which is a contradiction. It is easy to verify that B is a functor.

Let M be defined from $\mathscr{M} \mathscr{B}^{n+1}$ to $\mathscr{M} \mathscr{W}^{n+1}$ as follows:
(i) For each object $\langle B, \forall, h\rangle$ in $\mathscr{M}_{B^{n+1}}$, let $M(\langle B, \forall, h\rangle)=\langle M(B, h)$, $\mapsto, \neg, \mathbb{V}, \mathbb{I}\rangle$, where \mathbb{V} is defined pointwise.
(ii) If $\left\langle B_{1}, \forall_{1}, h_{1}\right\rangle$ and $\left\langle B_{2}, \forall_{2}, h_{2}\right\rangle$ are objects in $\mathscr{M} \mathscr{B}^{n+1}$ and g is an $\mathscr{M} \mathscr{B}^{n+1}$-morphism from $\left\langle B_{1}, \forall_{1}, h_{1}\right\rangle$ into $\left\langle B_{2}, \forall_{2}, h_{2}\right\rangle$ let $M(g): M\left(B_{1}, h_{1}\right) \longrightarrow M\left(B_{2}, h_{2}\right)$ where $M(g)(f)=g \circ f$, for any $f \in M\left(B_{1}, h_{1}\right)$.

It is clear that $M(g)$ is well defined because, if $f \in M\left(B_{1}, h_{1}\right)$ then for each $d \in \operatorname{Div}(n)$ and all integer $q, 1 \leq q \leq d$ we have $\xi_{d, q}(f) \in h_{1}(d)$; hence $\xi_{d, q}(g \circ f)=g\left(\xi_{d, q}(f)\right) \in$ $g\left(h_{1}(d)\right) \subseteq g g^{-1}\left(h_{2}(d) \subseteq h_{2}(d)\right.$. Therefore $g \circ f \in M\left(B_{2}, h_{2}\right)$. Besides $M(g)$ is a monadic W-homomorphism. It is easy to see that M is a functor.

From Theorems 2.2 and 2.3 follows that the functors B and M define a natural equivalence between the categories $\mathscr{M}_{\mathscr{W}^{n+1}}$ and $\mathscr{M} \mathscr{B}^{n+1}$.

3. REPRESENTATION BY RICH ALGEBRAS

Using the natural equivalence established in section 2 and the Representation Theorem by rich algebras for monadic Boolean algebras [14], we will prove that every monadic $(n+1)$-valued Wajsberg algebra can be represented by a rich algebra. Specifically, we will prove that every monadic $(n+1)$-valued W-algebra is isomorphic to a subalgebra B of a functional algebra A^{I} such that, for every $b \in B$ there exists $x_{0} \in I$ such that $b\left(x_{0}\right)=\bigwedge_{x \in I} b(x)$.

Let $\langle A, \forall\rangle$ a monadic $(n+1)$-valued Wajsberg algebra.
Claim 3.1 $\left\langle B(A), \forall, h_{A}\right\rangle \in M B^{n+1}$ (see Remark 2.3). Particularly, $\langle B(A), \forall\rangle$ is a monadic Boolean algebra, therefore it can be represented by a rich algebra as follows [14]. A constant of $B(A)$ is a boolean homomorphism $c: B(A) \rightarrow \forall(B(A))$ such that $c(x)=x$ for every $x \in \forall(B(A))$; the set of all constants of $B(A)$ is denoted by I. The functional algebra $\left\langle(\forall(B(A)))^{I}, V\right\rangle$ is a monadic boolean algebra where $(V f)(c)=\bigwedge_{c \in I} f(c)$, for each $f \in(\forall(B(A)))^{I}$. Then $\eta: B(A) \rightarrow(\forall(B(A)))^{I}$ defined by $\eta(b)(c)=c(b)$ for each $b \in B(A)$ is a monadic boolean monomorphism such that $\eta(b)(c)=\bigwedge_{x \in I}(\eta(b))(x)$.

Claim 3.2 The image of a filter in $B(A)$ under \forall is a filter in $\forall(B(A))$. Let h^{1} be the function from the lattice of divisors of n into the lattice of filters of $\forall(B(A))$ defined by $h^{1}(d)=\forall\left(h_{A}(d)\right)$. It is easy to show that $\left\langle\forall(B(A)), \forall, h^{1}\right\rangle \in M B^{n+1}$; then, by Corollary 2.2, $\left\langle M\left(\forall(B(A)), h^{1}\right), \mathbb{V}\right\rangle$ is a monadic $(n+1)$-valued Wajsberg algebra.

Claim 3.3 If F is a filter in $\forall(B(A))$, then F^{I} is a filter in $(\forall(B(A)))^{I}$. Let h^{2} be the function from the lattice of divisors of n into the lattice of filters of $(\forall(B(A)))^{I}$ defined by $h^{2}(d)=\left(\forall\left(h_{A}(d)\right)\right)^{I}$. It is easy to show that $\left\langle(\forall(B(A)))^{I}, V, h^{2}\right\rangle \in M B^{n+1}$. Therefore, $\left\langle M\left((\forall(B(A)))^{I}, h^{2}\right), \mathbb{V}\right\rangle$ is a monadic $(n+1)$-valued Wajsberg algebra, follows from Corollary 2.2.

Claim $3.4\left\langle M\left((\forall(B(A)))^{I}, h^{2}\right), \mathbb{V}\right\rangle$ and $\left\langle\left(M\left(\forall(B(A)), h^{1}\right)\right)^{I}, V\right\rangle$ are isomorphic algebras.
Let $\Psi: M\left((\forall(B(A)))^{I}, h^{2}\right) \rightarrow\left(M\left(\forall(B(A)), h^{1}\right)\right)^{I}$ be the function defined by $((\Psi(g))(c))(i)=g(i)(c)$, for each $g \in M\left((\forall(B(A)))^{I}, h^{2}\right), c \in I$ and $i \in\{1,2, \ldots, n\}$.

The function Ψ is well defined and it is a monadic W-isomorphism. Indeed, let $g \in$ $M\left((\forall(B(A)))^{I}, h^{2}\right), d \in \operatorname{Div}(n)$ and $1 \leq q \leq d$ be an integer. For short let $i_{0}=(q-1) \frac{n}{d}+1$ and $i_{1}=q \frac{n}{d}$; then $\xi_{d, q}(g)=g\left(i_{1}\right) \rightarrow g\left(i_{0}\right) \in h^{2}(d)=\left(\forall\left(h_{A}(d)\right)\right)^{I}$. Therefore for each $c \in I$ we have $\xi_{d, q}((\Psi(g))(c))=((\Psi(g))(c))\left(i_{1}\right) \rightarrow((\Psi(g))(c))\left(i_{0}\right)=g\left(i_{1}\right)(c) \rightarrow g\left(i_{0}\right)(c)=\left(g\left(i_{1}\right) \rightarrow\right.$ $\left.g\left(i_{0}\right)\right)(c) \in h^{1}(d)=\forall\left(h_{A}(d)\right)$.

On the other hand, let $f, g \in M\left((\forall(B(A)))^{I}, h^{2}\right), c \in I$ and $i \in\{1,2, \ldots, n\}$; then:
(i) $\Psi(f \mapsto g)=\Psi(f) \rightarrow \Psi(g)$, indeed:

$$
\begin{aligned}
& (\Psi(f \mapsto g)(c))(i)=(f \mapsto g)(i)(c)=\bigwedge_{k=1}^{n-i+1}(f(k)(c) \rightarrow g(k+i-1)(c)) \\
& =\bigwedge_{c \in I}(\Psi(g)(c))(i)=\bigwedge_{k=1}^{n-i+1}((\Psi(f)(c))(k) \rightarrow(\Psi(g)(c))(k+i-1)) \\
& =(\Psi(f)(c) \mapsto \Psi(g)(c))(i) .
\end{aligned}
$$

(ii) $\Psi(\neg f)=\neg \Psi(f)$, and
(iii) $\Psi(\mathbb{V} g)=V \Psi(g)$, indeed:

$$
\begin{aligned}
& (\Psi(\mathbb{V} g)(c))(i)=((\mathbb{V} g)(i))(c)=(V(g(i)))(c)=\bigwedge_{c \in I} g(i)(c)=\bigwedge_{c \in I}(\Psi(g)(c))(i) \\
& =\left(\bigwedge_{c \in I}(\Psi(g)(c))\right)(i)=((V \Psi(g))(c))(i) .
\end{aligned}
$$

(iv) Ψ is bijective.

Claim 3.5 From Theorem $2.2\langle A, \forall\rangle$ and $\left\langle M\left(B(A), h_{A}\right), \mathbb{V}\right\rangle$ are isomorphic monadic $(n+1)$ valued Wajsberg algebras; the isomorphism is $\varphi: A \longrightarrow M\left(B(A), h_{A}\right)$ defined by $\varphi(x)(i)=$ $\sigma_{i}(x)$ for all $x \in A$ and every integer $1 \leq i \leq n$.

Claim 3.6 The monomorphism η is a morphism between the objects $\left\langle B(A), \forall, h_{A}\right\rangle$ and $\left\langle(\forall(B(A)))^{I}, V, h^{2}\right\rangle$ in $\mathscr{M} \mathscr{B}^{n+1}$. Thus, $M(\eta)$ is a monadic W-monomorphism from $\left\langle M\left(B(A), h_{A}\right), \mathbb{V}\right\rangle$ into $\left\langle M\left((\forall(B(A)))^{I}, h^{2}\right), \mathbb{V}\right\rangle$.

From Claim 3.1 we only have to show $h_{A}(d) \subseteq \eta^{-1}\left(\left(\forall h_{A}(d)\right)^{I}\right)$, for every $d \in \operatorname{Div}(n)$. If $x \in h_{A}(d)$ then $\forall x \in \forall\left(h_{A}(d)\right)$, on the other hand, $\forall x=c(\forall x) \leq c(x)$, for each $c \in$ I. Therefore $c(x)=\eta(x)(c) \in \forall\left(h_{A}(d)\right)$ for every $c \in I$, i.e., $\eta(x) \in\left(h_{A}(d)\right)^{I}$, so $x \in$ $\eta^{-1}\left(\left(\forall h_{A}(d)\right)^{I}\right)$.

Claim 3.7 From Claims 3.1 to 3.6 we have the situation that is shown in the following diagram. The function $\gamma=\Psi \circ M(\eta) \circ \varphi$ from A into $\left(M\left(\forall(B(A)), h^{1}\right)\right)^{I}$ is a monadic W-monomorphism such that for every $a \in A$ there exists $x_{0} \in I$ such that $(\gamma(a))\left(x_{0}\right)$ $=\bigwedge_{c \in I}(\gamma(a))(c)$.

$$
\begin{array}{ccc}
\langle A, \forall\rangle & & \\
B \downarrow & & \\
\left\langle B(A), \forall, h_{A}\right\rangle & \longrightarrow & \\
M \downarrow & & \left\langle(\forall(B(A)))^{I}, V, h^{2}\right\rangle \\
\left\langle M\left(B(A), h_{A}\right), \mathbb{V}\right\rangle & \longrightarrow & \downarrow M \\
& \overrightarrow{M(\eta)} & \left\langle M\left((\forall(B(A)))^{I}, h^{2}\right), \mathbb{V}\right\rangle \\
& & \downarrow \Psi \\
& & \left\langle\left(M\left(\forall(B(A)), h^{1}\right)\right)^{I}, V\right\rangle
\end{array}
$$

References

[1] L. P. Belluce, R. Grigolia and A. Lettieri, Representations of monadic MV-algebras, Studia Logica 81 (2005), no. 1, 123-144.
[2] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu, Łukasiewicz-Moisil Algebras, North-Holland, 1991.
[3] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate texts in Mathematics 78, Springer Verlag, New York, 1981.
[4] C.C. Chang, Algebraic analysis of many valued logics, Transactions of the American Mathematical Society 88 (1958), 467-490.
[5] C.C. Chang, A new proof of the completeness of the Łukasiewicz axioms, Transactions of the American Mathematical Society 93 (1959), 74-80.
[6] R. Cignoli, Natural dualities for the algebras of Łukasiewicz finitely-valued logics, The Bulletin of Symbolic Logic 2 (1996), 218.
[7] R.L.O. Cignoli, I.M.L. D'Ottaviano and D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Academic Publishers, 2000.
[8] R. Cignoli and L. Monteiro, Maximal Subalgebras of MV V_{n}-algebras. A Proof of a Conjecture of A. Monteiro, Studia Logica 84,(2006), 393-405.VER
[9] A. Di Nola and A. Lettieri, One Chain Generated Varieties of MV-Algebras, Journal of Algebra 225 (2000), 667-697.
[10] A. Di Nola and R. Grigolia, On monadic MV-Algebras, Annals of Pure and Applied Logic 128 (2004), no. 1-3, 125-139.
[11] J.M. Font, A.J. Rodriguez and A. Torrens, Wajsberg algebras, Stochastica 8 (1984), 5-31.
[12] G. Georgescu, A. Iorgulescu and I. Leustean, Monadic and Closure MV-Algebras, Multiple Valued Logic Vol. 3 (1998) 235-257.
[13] R.S. Grigolia, Algebraic analysis of Łukasiewicz-Tarski's n-valued logical systems, in R. Wójcicki, G. Malinowski (Eds.) Selected Papers on Łukasiewicz Sentential Calculi, Ossolineum, Wrocław (1977), 8192.
[14] P.R. Halmos, Algebraic Logic, Chelsea Publishing Company, 1962.
[15] A. Iorgulescu, Connections between $M V_{n}$ algebras and n-valued Lukasiewicz-Moisil algebras Part II, Discrete Mathematics 202 1-3 (1999), 113-134.
[16] Y. Komori, The separation theorem of the \aleph_{0}-valued Łukasiewicz propositional logic, Reports of the Faculty of Sciences, Shizuoka University 12 (1978), 1-5.
[17] Lattanzi, M. B., Wajsberg Algebras with a U-operator, Journal of Multiple-Valued Logic and Soft Computing, Vol. 10, Nro. 4 (2004), 315-338.
[18] Lattanzi, M. B., $(n+1)$-Bounded Wajsberg Algebras with a U-operator, Reports on Mathematical Logic, Nro. 39 (2005), 89-111.
[19] M. Lattanzi and A. Petrovich, A Duality for ($n+1$)-valued MV-algebras, to appear in Reports on Mathematical Logic.
[20] N. G. Martínez, The Priestley Duality for Wajsberg Algebras, Studia Logica 49, No. 1 (1990), 31-46.
[21] L. Monteiro, Algebras de Łukasiewicz trivalentes monádicas, Notas de Lógica Matemática 32 (Univ. Nac. del Sur, Bahía Blanca, 1974).
[22] P. Niederkorn, Natural Dualities for Varieties of MV-algebras, I, Journal of Mathematical Analysis and Applications 255 (2001), 58-73. VER
[23] A.J. Rodríguez, Un estudio algebraico de los Cálculos Proposicionales de Łukasiewicz, Tesis Doctoral, Univ. de Barcelona, 1980.
[24] A. J. Rodríguez and A. Torrens, Wajsberg Algebras and Post Algebras, Studia Logica 53 (1994), 1-19.
[25] D. Schwartz, Theorie der polyadischen MV-algebren endlicher Ordnung, Math. Nachr. 78 (1977) 131138.
[26] D. Schwartz, Polyadic MV-algebras, Zeitschrift für Math. Logik und Grundlagen der Mathematik 26 (1980) 561-564.

Departamento de Matemática - Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa, Av. Uruguay 151-(6300) Santa Rosa, La Pampa, Argentina

E-mail: mblatt@exactas.unlpam.edu.ar
Departamento de Matemática - Universidad Nacional de Buenos Aires, Pabellón I - Ciudad Universitaria, Buenos Aires, Argentina

E-mail: apetrov@dm.uba.ar

