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TOTAL CENTRAL CURVATURE OF CURVES IN THE 3-DIMENSIONAL
LORENTZIAN SPACE

GRACIELA MARÍA DESIDERI

ABSTRACT. Total central curvature of closed curves in Euclidean spaces has been stud-
ied by Thomas F. Banchoff, see Duke Math. Journal, 1969. In some papers, it has been
related to Riemannian spaces, but this curvature has not been treated on spaces with indef-
inite metrics. In this work we generalize, by means of integral formulas, the total central
curvature from Euclidean spaces with dimension 2 and 3 to Lorentzian spaces with dimen-
sion 2 and 3, respectively.

1. INTRODUCTION

In some papers, the total central curvature is related to Riemannian spaces; but this
curvature has not been treated on spaces with indefinites metrics.

In [1], Thomas F. Banchoff stated that the total central curvature of a closed curve in
3-dimensional Euclidean space refers to the measure of curvedness of a space curve con-
tained in a bounded ball. He obtained this curvature by averaging the total absolute cur-
vature of the image curves under central projection from all points on the sphere, and he
showed that the total central curvature agrees with the classical total absolute curvature of
the original space.

In this work, we generalize, by means of integral formulas, the total central curvature
from Euclidean spaces with dimension 2 and 3 to Lorentzian spaces with dimension 2 and
3, respectively.

In 2-dimensional Euclidean space, the total central curvature of a closed curvef with
respect to the unit circleS1, tcc2

(
f ;S1

)
, is given by

tcc2
(

f ;S1)=
1

2π

∫
ξ∈S1

ϒξ ( f )dsS1

whereϒξ ( f ) denotes the number of local support lines tof passing through the pointξ .
One of the problems that arise when we want to generalize this curvature to 2-dimen-

sional Lorentzian space is the fact thatS1
1 has not finite length. For that reason we define

the central curvature of a closed curve with respect to a connected arcCj ⊂
(
S1

1

)
+ with

finite length, cc2( f ,Cj), by

cc2( f ,Cj) =
1

length(Cj)

∫
ξ∈Cj

ϒξ ( f )dsCj ,
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and the total central curvature,tcc2( f ), is defined by

tcc2( f ) = lim
Cj→(S1

1)+

cc2( f ,Cj) ,

if this limit exists; we say thattcc2( f ) = ∞ if this limit does not exist.
We will show that if f is aC 2 simple closed curve, thentcc2( f ) depends on the number

of its local support lightlike lines.
In 3-dimensional Lorentzian space, we consider the central projection mapπp in the

definition of central curvature of a closed curveg with respect to a connected regionSj ⊂S2
1

with finite area,cc3(g,Sj), as follows

cc3(g,Sj) =
1

area(Sj)

∫
p∈Sj

cc2
(
πp◦ i3◦g,Sj ∩L2

p

)
dsSj ,

whereL2
p denotes a plane parallel toTp

(
S2

1

)
which contains the origin of coordinates, and

i3 :
{

x∈ L3 : 〈x,x〉L > 1
}
→ L3−Tp

(
S2

1

)
is the inclusion map.

The total central curvature,tcc3(g), is defined by

tcc3(g) = lim
Sj→S2

1

cc3(g,Sj) ,

if this limit exists; we say thattcc3(g) = ∞ if this limit does not exist.
In section 2, Preliminaries, we will recall the basic notions in Lorentzian geometry.

2. PRELIMINARIES

In then-dimensional vector spaceRn, n∈ {2;3} , we denote the Euclidean inner product
and the Euclidean norm with〈,〉 and‖.‖ , respectively.

In what follows,n∈ {2;3} .
Let x andy be two vectors in then-dimensional vector spaceRn. As it is well known

([2, 5]), theLorentzian inner productof x andy is defined by

〈x,y〉L =−x1y1 +
n

∑
i=2

xiyi .

Thus the squareds2 of an element of arc-length is given by

ds2 =−dx2
1 +

n

∑
i=2

dx2
i .

The spaceRn equipped with this metric is called an-dimensional Lorentzian space, or
Lorentzn-space. We writeLn or Rn

1, [5], instead of(Rn, ds).
We say that a vectorx in Ln is timelikeif 〈x,x〉L < 0, spacelikeif 〈x,x〉L > 0, andnull if

〈x,x〉L = 0. The null vectors are also said to belightlike.
We say thatx is orthogonalto y if 〈x,y〉L = 0, x 6= y 6= 0.

Let x be a vector inLn, then‖x‖L =
√
|〈x,x〉L| is called theLorentzian normof x. We

say thatx is aunit vectorif ‖x‖L = 1, that is, if〈x,x〉L = 1 or 〈x,x〉L =−1.
We shall give a surfaceM in L3 by expressing its coordinatesxi as functions of two

parameters in a certain interval. We consider the functionsxi to be real functions of real
variables.
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We say thatM is a non-lightlike surfaceif at every p ∈ M its tangent planeTpM is
equipped with a positive definite or Lorentzian metric, [2].

A parametrized curve is called timelike, spacelike or null curve if at every point, its
tangent vector is timelike, spacelike or null, respectively.

We say that the curveC (O, r) =
{

X :
〈−→

OX,
−→
OX
〉

L
= r2

}
is a Lorentzian circlewith

centerO and radiusr, whereO is a point in the Lorentzian plane andr is a positive real
number. We remark thatC (O, r) has two branches and each of them is a timelike curve.
Hence, the Lorentzian circle is a timelike curve.

In what follows, we will denoteC ((0,0) ,1) with S1
1, and

(
S1

1

)
+=
{
(x1,x2) ∈ S1

1 : x2 > 0
}

.
We now recall a well know definition, [1].

Definition 1. Let f : S1 → R2 be a continuous map of the circle S1 into the Euclidean
plane. Alocal support lineto f at x is a line containing x and bounding a closed half-plane
which contains the image of a neighborhood of x in S1.

In the definition of local support line, we considerf as a continuous map of the circle
S1 into L2 when we are working in the Lorentzian plane.

We denote the number of local support lines tof passing through the pointξ ∈ L2 with
ϒξ ( f ) .

3. TOTAL CENTRAL CURVATURE OF PLANE CURVES

In [1], we find the definition of the curvature of a closed plane curve with respect to a
circle in Euclidean plane.

Definition 2. Let f : S1 → R2 be a continuous map of the circle S1 into the Euclidean
plane. Thecurvature off with respect to a circleC is defined by

tcc2( f ;C) =
1

length(C)

∫
ξ∈C

ϒξ ( f ) dsC

whereϒξ ( f ) and dsC denote the number of local support lines to f passing through the
point ξ , and the element of arc of C so that

∫
ξ∈C dsC = length(C) , respectively.

That means that the curvaturetcc2( f ;C) is defined as the average value ofϒξ ( f ) for
pointsξ ∈C.

Example 3. We show three examples where f= identity and C is a circle with centre
O = (0,0) and radius r.

i) If 0 < r < 1, thenϒξ ( f )≡ 2. Hence, tcc2( f ;C) = 2.
ii) If r = 1, thenϒξ ( f )≡ 1. Hence, tcc2( f ;C) = 1.

iii) If r > 1, thenϒξ ( f )≡ 0. Hence, tcc2( f ;C) = 0.

If f is a convex closed curve andC is a circle with centerO and radiusr, thentcc2( f ;C)
≡ 2 if

∥∥∥−→OX
∥∥∥< r, ∀X ∈ f

(
S1
)

(cf. [1]).

One of the problems that arise when we want to generalize Definition 2 from the Eu-
clidean plane to the Lorentzian plane is the fact that the Lorenzian circle does not have
finite length. For that reason, we will define first the curvature of a continous mapf with
respect to a connected arcCj ⊂

(
S1

1

)
+ which has finite length.
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42 GRACIELA MARÍA DESIDERI

In what follows, we consider a continuous mapf : S1 → L2 of the circleS1 into the
Lorentzian plane such thatf

(
S1
)
∩
(
S1

1

)
+ = /0.

Definition 4. Let Cj ⊂
(
S1

1

)
+be a connected arc such that0< length(Cj) < ∞. Thecentral

curvature off with respect toCj is given by

cc2( f ;Cj) =
1

length(Cj)

∫
ξ∈Cj

ϒξ ( f ) dsCj ,

whereϒξ ( f ) denotes the number of local support lines to f passing through the pointξ ,
and

∫
ξ∈Cj

dsCj = length(Cj) .

Remark 5. Since f is a closed curve,ϒξ ( f ) 6= 0 ∀ξ ∈
(
S1

1

)
+ . Also,ϒξ ( f ) 6= ∞ because

ξ /∈ f
(
S1
)
.

Now we define the total central curvature off .

Definition 6. Let (Cj) j≥1 a sequence of connected arcs such that:

i) Cj ⊂
(
S1

1

)
+ , ∀ j ≥ 1.

ii) Cj ⊂Cj+1, ∀ j ≥ 1.

iii) length(Cj) < ∞, ∀ j ≥ 1, and lim
j→∞

length(Cj+1)
length(Cj) = 1.

iv) lim
j→∞

Cj =
(
S1

1

)
+ .

Thetotal central curvatureof f is defined by

tcc2( f ) = lim
j→∞

cc2( f ;Cj) = lim
j→∞

1
length(Cj)

∫
ξ∈Cj

ϒξ ( f )dsCj ,

if this limit exists; we say that tcc2( f ) = ∞ if this limit does not exist.

The existence of a sequence(Cj) j≥1 fulfilling the above mentioned conditions is shown
by the following Theorem.

Theorem 7. In L2 there exists a sequence of connected arcs(Cj) j≥1 such that:

i) Cj ⊂
(
S1

1

)
+ , ∀ j ≥ 1.

ii) Cj ⊂Cj+1, ∀ j ≥ 1.

iii) length(Cj) < ∞, ∀ j ≥ 1, and lim
j→∞

length(Cj+1)
length(Cj) = 1.

iv) lim
j→∞

Cj =
(
S1

1

)
+ .

Proof. Let
{

a j
1, b j

1

}
j≥1

be a sequence of pairs of real numbers such that:

a)b j+1
1 < b j

1 < a j
1 < a j+1

1 , ∀ j ≥ 1.

b) lim
j→∞

a j
1

a j+1
1

= lim
j→∞

b j
1

b j+1
1

= 1
2.

c) lim
j→∞

a j
1 = +∞ and lim

j→∞
b j

1 =−∞.

We call IAB =
{

I+ (B)∩ I− (A) : A,B∈ L2
}

, whereI+ (B) and I− (A) are the chrono-
logical future ofB and the chronological past ofA, respectively; in particular,I+ (B) and
I− (A) are open sets in the Alexandrov topology ofL2, cf. [2] and [6].
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Let A j =

(
a j

1,

√
1+
(

a j
1

)2
)

andB j =

(
b j

1,

√
1+
(

b j
1

)2
)

. HenceA j , B j ∈
(
S1

1

)
+ and

IA j B j ⊂ IA j+1B j+1, ∀ j ≥ 1.

Hence, if we callCj = IA j B j ∩
(
S1

1

)
+ then(Cj) j≥1 is a sequence of connected arcs with

properties i)-iv).

Note thatCj =
{(

x j
1,x

j
2

)
∈
(
S1

1

)
+ : b j

1 < x j
1 < a j

1

}
.

Lemma 8. Let (Cj) j≥1 be a sequence of connected arcs as given in Theorem 7. If(Ci)i≥1

is a subsequence of(Cj) j≥1 with properties i)-iv), then

lim
j→∞

cc2( f ;Cj) = lim
i→∞

cc2( f ;Ci) .

Proof. Since the properties i)-iv) hold for(Cj) j≥1and(Ci)i≥1 , and(Ci)i≥1⊂ (Cj) j≥1 , then:
∀i ≥ 1 ∃ j1i , j2i ≥ 1 such thatCj1i

⊂Ci ⊂Cj2i
and∀ j ≥ 1 ∃i1 j , i2 j ≥ 1 such thatCi1 j

⊂
Cj ⊂Ci2 j

.

Hence, lim
j→∞

cc2( f ;Cj) = lim
i→∞

cc2( f ;Ci) .

Theorem 9. Let (Cj) j≥1 and
(
C

′
h

)
h≥1

be two sequences of connected arcs as given in

Theorem 7, thenlim
j→∞

cc2( f ;Cj) = lim
h→∞

cc2

(
f ;C

′
h

)
.

Proof. By properties i)-iv),∀h≥ 1 ∃ j1h, j2h ≥ 1 such thatCj1h
⊂C′

h⊂Cj2h
and

(
Cj1h

)
h≥1

,(
Cj2h

)
h≥1

⊂ (Cj) j≥1 with properties i)-iv). Hence, we have that

1

length
(
Cj2h

) ∫
ξ∈Cj2h

ϒξ ( f )dsCj2h
<

<
∫

ξ∈
(
Cj2h

−C
′
h

) ϒξ ( f )

length(C
′
h)

ds(
Cj2h

−C
′
h

)+
∫

ξ∈C′
h

ϒξ ( f )
length(C′

h)
dsC′

h
<

<
∫

ξ∈
(
Cj2h

−C
′
h

) ϒξ ( f )

length
(
Cj1h

)ds(
Cj2h

−C
′
h

)+
∫

ξ∈C′
h

ϒξ ( f )
length(C′

h)
dsC′

h
<

<
∫

ξ∈
(
Cj2h

−Cj1h

) ϒξ ( f )

length
(
Cj1h

)ds(
Cj2h

−Cj1h

)+
∫

ξ∈Cj1h

ϒξ ( f )

length
(
Cj1h

)dsCj1h
.

By Lemma 8, we obtain

lim
j→∞

cc2( f ;Cj)≤

≤ lim
h→∞

1

length
(
Cj1h

) ∫
ξ∈
(
Cj2h

−C
′
h

)ϒξ ( f )ds(
Cj2h

−C
′
h

)+ lim
h→∞

cc2

(
f ;C

′
h

)
≤

≤ lim
h→∞

1

length
(
Cj1h

) ∫
ξ∈
(
Cj2h

−Cj1h

)ϒξ ( f )ds(
Cj2h

−Cj1h

)+ lim
j→∞

cc2( f ;Cj) .

On the other hand,

lim
h→∞

∫
ξ∈
(
Cj2h

−Cj1h

)ϒξ ( f )ds(
Cj2h

−Cj1h

) = constant⇒

⇒ lim
h→∞

1

length
(
Cj1h

) ∫
ξ∈
(
Cj2h

−Cj1h

)ϒξ ( f )ds(
Cj2h

−Cj1h

) = 0.
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Then,

lim
h→∞

cc2

(
f ;C

′
h

)
≤ lim

j→∞
cc2( f ;Cj) . (1)

Analogously,∀ j ≥1∃h1 j ,h2 j ≥1 such thatC′
h1 j
⊂Cj ⊂C′

h2 j
and

(
C′

h1 j

)
j≥1

,
(
C′

h2 j

)
j≥1

⊂(
C

′
h

)
h≥1

with properties i)-iv). Hence,

lim
j→∞

cc2( f ;Cj)≤ lim
h→∞

cc2

(
f ;C

′
h

)
. (2)

By (1) and (2), we have that

lim
j→∞

cc2( f ,Cj) = lim
h→∞

cc2
(

f ,C′
h

)
.

Theorem 10. Let f be aC 2 simple closed curve. According to Definition 6, we have that

2≤ tcc2( f )≤ η

2
,

whereη denotes the number of lightlike lines which are tangent to f and passing through
some point of

(
S1

1

)
+ .

The equality holds if f is a convex simple closed curve.

Proof. Let f be aC 2 map. By [3] we know thatη ≥ 4 becausef has at least four lightlike
points.

By [6], we know thatη < ∞ becausef is a closed curve and it has a finite number of
folds.

Denoteu : x1 = x2 andv : x1 =−x2 which are two lightlike lines inL2 passing through
the point(0,0).

Let u1, . . . ,uh be lightlike lines such thatu j is local support line tof andu j is parallel to
u, and letv1, . . . ,vt be lightlike lines such thatv j is local support line tof andv j is parallel
to v. DenoteU j = v j ∩u andVj = u j ∩v.

We denote the number of pointsU j and the number of pointsVj with ηu andηv, respec-
tively.

Let Ui =
(
xi

1,x
i
2

)
andVj =

(
y j

1,y
j
2

)
, and letA = (a1,a2) ∈

(
S1

1

)
+ such that

a1 = max
1≤i≤h, 1≤ j≤t

{∣∣xi
1

∣∣ , ∣∣∣y j
1

∣∣∣}
and letB = (−a1,a2) . We denote the arc betweenA andB with AB.

Since the lightlike linesu andv are asymptotic lines of
(
S1

1

)
+ , andu j andv j are parallel

to u andv, respectively, thenϒξ ( f )≤ h+ t, ∀ξ ∈
(
S1

1

)
+−AB.

Let (Cj) j≥1 be a sequence of arcs as given in Definition 6. Without loss of generality,
we considerCj as simetric arcsA jB j ; that means:Cj = A jO+ OBj and length(Cj) = 2
length(A jO), whereO = (0,0) .

There existsj0 such that for everyj ≥ j0, AB⊂Cj . Then

1
length(Cj)

∫
ξ∈Cj

ϒξ ( f ) dsCj =
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= 1
length(Cj)

(∫
ξ∈ABϒξ ( f )dsCj +

∫
ξ∈(Cj−AB) ϒξ ( f )ds(Cj−AB)

)
.

Since
1

length(Cj)
∫

ξ∈(Cj−AB) ϒξ ( f )ds(Cj−AB) =

=
∫

ξ∈(A j O−AO)
ϒξ ( f )

2length(A j O)ds(A j O−AO) +
∫

ξ∈(OBj−OB)
ϒξ ( f )

2length(A j O)ds(OBj−OB),

then
1

length(Cj)
∫

ξ∈Cj
ϒξ ( f ) dsCj =

= 1
length(Cj)

∫
ξ∈ABϒξ ( f )dsCj +(ηu +ηv)

length(A j O−AO)
2length(A j O) .

Hence,

2≤ tcc2( f ) = lim
j→∞

1
length(Cj)

∫
ξ∈Cj

ϒξ ( f ) dsCj ≤
ηu+ηv

2 = η

2 .

If f is convex then, by [3],η = 4. Hence,tcc2( f ) = 2.

Corollary 11. Let f1 and f2 be twoC 2 simple closed curves such that f1
(
S1
)
∩
(
S1

1

)
+ =

f2
(
S1
)
∩
(
S1

1

)
+ = /0. If f1 and f2 differ from a translation, then tcc2( f1) = tcc2( f2) .

Proof. The numbersηu andηv are invariants under translations.

Note that, in this case, we cannot refer to the rotations becausef1 and f2 are not two
pure curves.

4. TOTAL CENTRAL CURVATURE OF CURVES IN THELORENTZ 3-SPACE

In Thomas F. Banchoff’s words, the total central curvature is related to the measure of
curvedness of a space closed curve contained in the ball (bounded by an Euclidean sphere)
obtained by averaging the total absolute curvatures of the image curves under central pro-
jection from all points on the sphere, [1] .

In 3-dimensional Lorentzian space, we find similar problems to the 2-dimensional case:
S2

1 is not a compact surface and its area is not finite either.
Analogous to section 3, we will define first the curvature of a continous mapg with

respect to a connected regionSj ⊂ S2
1 which has finite area.

In what follows, we consider a one-to-one continuous mapg : S1 → L3 of the circleS1

into the Lorentzian 3-space such that〈x,x〉L > 1 ∀x∈ g
(
S1
)
.

In [4], we studied some projection maps in Lorentzian 3-space.

Definition 12. Let Tp
(
S2

1

)
be the tangent plane to S2

1 at p∈ S2
1 and let L2

p be the plane
parallel to Tp

(
S2

1

)
through the center of S21. Thecentral projection mapπp : L3−Tp

(
S2

1

)
→

L2
p is given by

πp(x) =
1

1−〈x, p〉L
(x−〈x, p〉L p) .

This projection map is a one-to-one and onto map (cf. [4] for more details). Note that
πp restricted toS2

1−Tp
(
S2

1

)
gives the stereographic projection.

Let us remark thatL2
p is congruent to the planeL2.
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Definition 13. Let Sj ⊂ S2
1 be a connected region such that area(Sj) < ∞. The central

curvature ofg with respect toSj is defined by

cc3(g,Sj) =
1

area(Sj)

∫
p∈Sj

cc2

(
πp◦ i3◦g,

(
Sj ∩L2

p

)
+

)
dsSj ,

where
∫

Sj
dsSj = area(Sj), i3 :

{
x∈ L3 : 〈x,x〉L > 1

}
→ L3−Tp

(
S2

1

)
is the inclusion map,

andπp : L3−Tp
(
S2

1

)
→ L2

p is the central projection map.

In Theorem 19 we will show some properties of
(
Sj ∩L2

p

)
+ .

Remark 14. According to Definition 4, the curvature of g with respect to Sj is given by

cc3(g,Sj) =
∫

p∈Sj

∫
ξ∈(Sj∩L2

p)+

ϒξ (πp◦ i3◦g)
area(Sj) length

(
Sj ∩L2

p

)
+

ds(Sj∩L2
p)+

dsSj .

We now define the total central curvature ofg.

Definition 15. Let (Sj) j≥1 be a sequence of connected regions such that:

i) Sj ⊂ S2
1, ∀ j ≥ 1.

ii) Sj ⊂ Sj+1, ∀ j ≥ 1.

iii) area(Sj) < ∞, ∀ j ≥ 1, and lim
j→∞

area(Sj+1)
area(Sj) = 1.

iv) ∀p∈ S2
1, ∃ jp ≥ 1 such that

(
Sj ∩L2

p

)
+ 6= /0, ∀ j ≥ jp.

v) lim
j→∞

Sj = S2
1.

Thetotal central curvatureof g is defined by:

tcc3(g) = lim
j→∞

cc3(g,Sj) ,

if this limit exists; we say that tcc3(g) = ∞ if this limit does not exist.

The existence of a sequence(Sj) j≥1 fulfilling the above mentioned conditions is shown
by the following Theorem.

Theorem 16. In L3 there exists a sequence(Sj) j≥1 of connected regions such that:

i) Sj ⊂ S2
1, ∀ j ≥ 1.

ii) Sj ⊂ Sj+1, ∀ j ≥ 1.

iii) area(Sj) < ∞, ∀ j ≥ 1, and lim
j→∞

area(Sj+1)
area(Sj) = 1.

iv) ∀p∈ S2
1, ∃ jp ≥ 1 such that

(
Sj ∩L2

p

)
+ 6= /0, ∀ j ≥ jp.

v) lim
j→∞

Sj = S2
1.

Proof. There exists a sequence of pairs of suitable real numbers
{

a j
1, b j

1

}
j≥1

such that:

a)b j+1
1 < b j

1 < a j
1 < a j+1

1 , ∀ j ≥ 1.

b) lim
j→∞

a j
1

a j+1
1

= lim
j→∞

b j
1

b j+1
1

= 1
2.

c) lim
j→∞

a j
1 = +∞ and lim

j→∞
b j

1 =−∞.
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Then (Sj) j≥1 is a sequence of connected regions with properties i)-v), whereSj ={(
x j

1,x
j
2,x

j
3

)
∈ S2

1 : b j
1 < x j

1 < a j
1

}
.

Lemma 17. Let (Sj) j≥1 be a sequence of connected regions as given in Theorem 16. If
(Si)i≥1 is a subsequence of(Sj) j≥1 with properties i)-v), then

lim
j→∞

cc3(g;Sj) = lim
i→∞

cc3(g;Si) .

Proof. This proof is analogous to the proof of Lemma 8.

Theorem 18. Let (Sj) j≥1 and
(

S
′
h

)
h≥1

be two sequences of connected regions as given in

Theorem 16, thenlim
j→∞

cc3(g;Sj) = lim
h→∞

cc3

(
g;S

′
h

)
.

Proof. This proof is analogous to the proof of Theorem 9.

We now study the arcs
(
Sj ∩L2

p

)
+ .

Theorem 19. Let p∈ S2
1 and let (Sj) j≥1 be a sequence of connected regions as given

in Theorem 16. If there exist jp ≥ 1 and
((

Shp ∩L2
p

)
+

)
hp≥ jp

⊂
((

Sj ∩L2
p

)
+

)
j≥ jp

such

that lim
hp→∞

Shp = S2
1 and lim

hp→∞

length(Shp+1∩L2
p)+

length(Shp∩L2
p)+

= 1, then
((

Shp ∩L2
p

)
+

)
hp≥ jp

is a sequence

of connected arcs of a branch
(
S2

1∩L2
p

)
+ of the Lorentzian circle

(
S2

1∩L2
p

)
in L2

p with
properties i)-iv) of Theorem 7.

Proof. Let p be a fixed point ofS2
1 and let(Sj) j≥1 be a sequence of connected regions

as given in Theorem 16. There existsjp ≥ 1 such thatp ∈ Sj , ∀ j ≥ jp, and there exists((
Shp ∩L2

p

)
+

)
hp≥ jp

⊂
((

Sj ∩L2
p

)
+

)
j≥ jp

such that lim
hp→∞

Shp = S2
1 and lim

hp→∞

length(Shp+1∩L2
p)+

length(Shp∩L2
p)+

= 1.
Hence,∀hp ≥ jp,

(
Shp ∩L2

p

)
+ is a connected arc. Also:

i) SinceSj ⊂ S2
1, then

(
Shp ∩L2

p

)
+ ⊂

(
S2

1∩L2
p

)
+ , ∀hp ≥ jp.

ii) SinceSj ⊂ Sj+1, then
(
Shp ∩L2

p

)
+ ⊂

(
Shp+1∩L2

p

)
+ , ∀hp ≥ jp.

iii) Sincearea(Sj) < ∞, thenlength
(
Sj ∩L2

p

)
+ < ∞, ∀ j ≥ 1. In particular,

length
(
Shp ∩L2

p

)
+ < ∞, ∀hp ≥ jp.

Let us recall that
(
Sj ∩L2

p

)
+ is a timelike curve inL2

p and(
Sj ∩L2

p

)
=
{(

x j
1,x

j
2,x

j
3

)
∈ S2

1∩L2
p : b j

1 < x j
1 < a j

1

}
if Sj =

{(
x j

1,x
j
2,x

j
3

)
∈ S2

1 : b j
1 < x j

1 < a j
1

}
.

iv) Since lim
hp→∞

Shp = S2
1 and lim

Shp→S2
1

(
Shp ∩L2

p

)
+ =

(
S2

1∩L2
p

)
+, then

lim
hp→∞

(
Shp ∩L2

p

)
+ =

(
S2

1∩L2
p

)
+ .

We show the main theorem inL3.
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Theorem 20. Let(Sj) j≥1 be a sequence of connected regions as given in Theorem 16 such

that∀p∈ S2
1 there exist jp ≥ 1 and

(
Shp

)
hp≥ jp

⊂ (Sj) j≥1 as given in Theorem 19. Then we

have that

tcc3(g) = lim
j→∞

1
area(Sj)

∫
p∈Sj

tcc2(πp◦ i3◦g)dsSj .

Proof. Let γp = πp◦ i3◦g andtcc3(g) = lim
j→∞

cc3(g,Sj).

According to definitions 6, 13 and 15 we have that:

lim
j→∞

1
area(Sj)

∫
p∈Sj

[
tcc2(γp)−cc2

(
γp,

(
Sj ∩L2

p

)
+

)]
dsSj

= lim
j→∞

1
area(Sj)

∫
p∈Sj

[
lim

tp→∞
cc2
(
γp, Ctp

)
−cc2

(
γp,

(
Sj ∩L2

p

)
+

)]
dsSj

= lim
j→∞

1
area(Sj)

∫
p∈Sj

lim
tp→∞

[
cc2
(
γp, Ctp

)
−cc2

(
γp,

(
Sj ∩L2

p

)
+

)]
dsSj .

By Theorems 16 and 19, we may assume that
(
Ctp

)
tp≥ jp

=
((

Shp ∩L2
p

)
+

)
hp≥ jp

. Then,

lim
j→∞

1
area(Sj)

∫
p∈Sj

[
tcc2(γp)−cc2

(
γp,

(
Sj ∩L2

p

)
+

)]
dsSj

= lim
j→∞

1
area(Sj)

∫
p∈Sj

lim
hp→∞

[
cc2

(
γp,

(
Shp ∩L2

p

)
+

)
−cc2

(
γp,

(
Sj ∩L2

p

)
+

)]
dsSj .

Hence, by Lemma 8,

lim
j→∞

1
area(Sj)

∫
p∈Sj

[
tcc2(γp)−cc2

(
γp,

(
Sj ∩L2

p

)
+

)]
dsSj = 0.
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