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Abstract

The variety of U-Brouwerian semilattices (or U BS-algebras) is
introduced as a generalization of Brouwerian semilattices (P. Kohler,
Brouwerian semilattices, Trans. Amer. Math. Soc., 268 (1981), 103-
126). A UBS-algebra is an algebra (4, A, —,V, 1) of type (2,2,1,0)
such that (4,A,—,1) is a Brouwerian semilattice and V satisfies the
identities: V1 = 1, z AVz = Vz, Wz = Vz, Y(z Ay) = Vz A Vy,
V(Vz — Vy) = Vz — Vy.

The congruences are determined and it is shown that the principal
ones are equationally definable. Furthermore, it is demonstrated that
the variety of U BS-algebras is arithmetical.

Finally, the subdirectly irreducible U BS-algebras, as well as the
simple and the semisimple ones are characterized.
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Introduction

In 1957, A. Monteiro and O. Varsavsky [10] considered a generalization of
the monadic Boolean algebras introduced by P. Halmos [5] and defined the
monadic Heyting algebras as triples (L,3,V), where L isa Heyting algebra,
3 is a quantifier on L [3, p. 185] and VY is the dual of an additive clousure
operator [1, p. 47|, called existential quantifier and universal quantifier,
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respectively which also satisfy the following identities: Y3z = 3z and Ivz =
Vz.

In 1963, W. C. Nemitz [11] started the study of the implicative semilat-
tices from a purely algebraic point of view. An interest in these algebras also
arose from the field of Logic since they form the algebraic counterpart of the
fragment of intuitionistic propositional calculus, whose only connectives are
the implication and the conjunction. The implicative semilattices have also
been studied by other authors under different names: Brouwerian semilat-
tices by Kohler [6], Hertz algebras by Porta [13], generalized Curry algebras
by A. Monteiro [9], etc.. A detailed description of them can be found in [4]
[6], [9] and [11].

On the other hand, it is well known that every finite implicative semilat-
tice is a Heyting algebra, but in general it may not admit of an underlying
lattice structure. Therefore, it is not possible to define the notion of existen-
tial quantifier on these algebras. Nevertheless, it is possible to extend them
by adding a particular universal quantifier and this is what motivated us to
consider what we have called U-Brouwerian semilattices.

Section 1 of this paper contains a concise summary of the results of the
implicative semilattice theory which are necessary for the development of
the part that follows. In section 2, we introduce the variety of implicative
U-semilattices; we also show that the principal congruences are equationally
definable and that the variety is arithmetical. In section 3, we character-
ize the subdirectly irreducible algebras and the simple ones of this variety.
Finally, in section 4, by using a result obtained by A. Monteiro [8], we demon-
strate that the semisimple algebras form a subvariety.

b

1 Preliminaries

A Brouwerian semilattice (or BS-algebra) is an algebra (A,A,—,1) of
type (2,2, 0), which satisfies the following identities:

(Bl) ¢ — z =1,
(B2) (z—y) Ay =y,
B3) zA(z—y)=z Ay,

(Bd) 2~ (yAz)=(z > 2)A(z — ).
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The variety of BS-algebras will be denoted by BS.

It is well known that every BS-algebra is a meet-semilattice with last
element 1. The following properties will be frequently used in this paper.
For any BS-algebra A and z, y, z € A, the following identities are fulfilled :

(B5

= T,

) 1
(B6) = (y—2)=(zAy) > 2= (z—y) = (z - 2),
(B7) z=zA((z—y) —y),
B8) ((z—y) =y A(z—y) =y,
(B9) z <y ifand only if z — y = 1,
(B10) 2 <y implies z - 2<z2 -y, y > 2<z— 2,
Bll) z - (y—2) =y — (z > 2).
In [11], it was proved that the congruence relations of a B S—algebra are

in a one-to-one correspondence with their filters. More precisely, if F is a
filter of a BS-algebra A, then the relation

RF)={(z,y) e Ax A:(z > y)A(y - z) € F}

is a congruence relation on A and the mapping F — R(F) is an iso-
morphism from the lattice 7 (A) of all the filters of A onto the lattice Con(A)
of all the congruences of A, the inverse of which is given by © — [1]g, where
[1]e denotes the congruence class of 1 modulo ©.

2 UBS-algebras

Definition 2.1 An algebra (A, A, —,¥, 1) of type (2,2,1,0) is a U -Brouwerian
semilattice (or UBS-algebra ) if (A, A, —, 1) is a BS—algebra and the follow-
ing properties are verified:

(U1) V1 =1,
(U2) z AVz = Vz,
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(U3) Wz = Vz,
(U4) Y(z Ay) =Vz AVy,
(U5) V(Vz — Vy) = Vz — Vy.

We shall denote the variety of U B S-algebras by UBS and the elements
of UBS simply by A or by (A4,V), as usual.

U1l and U3 can be easily demonstrated from the other axioms. Besides,
each of the axioms U2, U4 and U5 is independent of the rest. Indeed,

Independence of U2: Let A € BS whose Hasse diagram is indicated in Fig-
ure 1 and where Va = V1 =1 and V0 = 0. Then, U4 and U5 are verified
but U2 is not valid because a AVa =a # 1 = Va.

Independence of U4: Let A be the BS-algebra indicated in Figure 2, where
Ve = z if  # ¢ and Vc = a. Hence U2 and U5 hold but U4 does not,
because V(bAc)=Vb=15b#0=VbAVe.

Independence of U5: Let A € BS, whose Hasse diagram is indicated in Fig-
ure 3, and V0 =Va =0, Vb =Vd = b and Vz = z if z = ¢,1. Then U2 and
U4 are valid, but U5 is not, because V(Ve — Vd) = V(c —»d) =b # d =
Ve — Vd.

1 1 1
C C d
»
a b a b
0 0 0
Fig. 1 Fig. 2 Fig. 3

It is important to point out that the universal quantifiers on B S-algebras
are determined by their range in the following sense:
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Proposition 2.1 If V is a universal quantifier on a BS-algebra A, then the
range of V, VA, s a subalgebra of A such that, for all z € A, Yz is the
largest element in the set (x] VA, where (z] = {a € A:a < z}.

Proposition 2.2 If S is a subalgebra of a BS-algebra A such that there
exists the largest element of (z) NS for all z € A, then (A,Y) is a UBS-
algebra, such that YA = S, where Yx 1is the largest element of the set (z]NS.

Praaf.
(U2) Tt follows from the fact that Yz € (z]N S.

(U4) It can be seen without any difficulty that (1)ifz,y€ Aand z < y,
then Vz < Vy. Let 2z = Vz AVy. By U2, we have that 2 < z and 2 < .
Furthermore, since Vz, Vy € S we get that z € S. Then z € (zAy]NS and,
as a consequence, z < V(z A y). The other inequality follows immediately
from (1).

(U5) By U2, V(Vz — Vy) < Vz — Vy. On the other hand, since Vz,
Vy € § we have that Vo — Vy € S. Therefore, Vz — Vy € (Vz - VylNn S
and from this it results that Vz — Vy < V(Vz — Vy). O

Next, we shall characterize the congruences in UBS similarly to that
indicated in [11].

Definition 2.2 Let A € UBS. A U-filter F of A is a filter such that, if
z € F, it implies Vz € F.

We shall denote by Fi(A) the family of all U-filters of A.
Theorem 2.1 If A € UBS, then Con(A) = {R(F): F € Fu(A)}.

Proof. We only prove that R(F) is compatible with V. If (z,y) € R(F),
then (z — y)A(y — z) € F. Hence, from Definition 2.2, U4 and B3, we have
that V((z - y) A(y — 2)) =V(z — y) AV(y — z) < (V2 — Vy) A (Vy —
Vz) € F. O

On the other hand, in this variety the principal congruences are equa-
tionally definable. More precisely,

Proposition 2.3 Let A € UBS and a,b € A. Then ©(a,b) = {(z,y) €
AxA:VY({(e—>b)ADb—-a)<(z—y) Ay — z)} is the congruence
generated by (a,b).
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Proof. Let F = [V((a — b) A (b — a))) be the filter generated by
V(e = b) A (b — a)). Then F is a U-filter and R(F) = {(z,y) € Ax A:
Vile =) A (b — a)) < (z — y)A(y — z)}. Moreaver, from U2 we have
that (a,b) € R(F). On the other hand, let (1) o € Con(A) such that
(2) (a,b) € @, hence R(F) C . Indeed, let (z,y) € R(F). Consequently
z=Y{{a = b A —>a))<(z—y)A(y — z) and by B3 we obtain that
(3) zAz <y and (4) 2 Ay < z. From (1) and (2) we get that (2,1) € ¢,
and so from (3) and (4) it follows that (z — y,y — z) € a. Therefore, from
B2 and B3 it results that (z,y) € e. Hence ©(g,b) = R(F). a

From Proposition 2.3 we conclude that UBS has the congruence extension
property.

Lemma 2.1 In UBS the following identities are verified:
m(z,2,2) =m(z,y,z) =m(z,2,2) = %,
where m(z,y,2) = V(z > y) = 2)A(V(z = y) > z)A V(2 — z) — z).

Proof.

(i) m(z, z,2) = z: From B1, B5, Ul and B2 we have that m(z,z,z2) =
Mz — 2) = 2)AzA Mz — 2) - ) = (¥(z — 2) — 2) Az Since
z < ¥(z — z) — z, then (i) holds.

(ii) m(z,y,z) = z: It is an immediate consequence of B1, Ul, B5 and
B2.

(iii) m(z, 2, ) = z: It is an immediate consequence of B1, Ul and B5. O
Theorem 2.2 The variety UBS is arithmetical.

Proof. It follows immediately from Lemma 2.1 and {12]. O

3 Subdirectly irreducible and simple algebras

Next, we shall characterize the subdirectly irreducible algebras as well as
the simple algebras of this variety.

Lemma 3.1 Let A € UBS. Then the following conditions are equivalent:

(i) A is subdirectly irreducible,
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(ii) there is Fo € Fy(A)\{1}, such that Fo C F for all F € Fy(A) \{1}.

Theorem 3.1 Let A € UBS. Then the following conditions are equivalent:
(i) A is subdirectly irreducible,

(i) VA\ {1} has last element.

Proof. (i)=(ii): By Lemma 3.1, there is Fo € Fy(A) \ {1}, such that

Fo € F for all FF € Fy(A)\ {1}. Since Fy # {1}, there is p € Fy, p # 1.
From Vp # 1 and Vp € Fy it follows that [Vp) C F and, consequently, (1)
[Vp) = Fo. On the other hand, if Vz € VA\{1}, then [vz) € Fu(A)\{1} and
by (1) we get that [Vp) C [Vz). Hence, Vp is the last element of VA \ {1}.

(ii)=>(i): Let Fy = [Vp), where Vp is the last element of VA \ {1}. Then
Fo € Fy(A)\ {1}. Furthermore, if F' € Fy(A)\ {1}, then there is z € F,
z # 1. Therefore, Vz € VA\{1} from which it follows that Fy C F. Then,
by Lemma, 3.1 we conclude the proof. ]

Proposition 3.1 Let A € UBS with more than one element. If A is simple
then it has first element.

Proof. Let a € A, a # 1. Hence {1} # [Va) € Fu(A) and since A is
simple, we have that [Va) = A and so VYa < z for all z € A. O

Theorem 3.2 gives a characterization of the simple UBS-algebras.

Theorem 3.2 Let A € UBS with more than one element. Then the follow-
ing conditions are equivalent:

(i) A 1s simple,
(ii) VA = {0, 1}.

Proof. (i)=(ii): Let = € VA. Then [vVz) € Fy(A) and by (i) we have that
[Vz) = {1} or [Vz) = A. Hence V4 = {0,1}.

(i)=(i): Let F € Fy(A)\ {1}, then there is z € F, z # 1. Since
Vz € F \ {1} we get that 0 € F, from which it follows that F = A. O

89



4 Semisimple algebras

Our next task will be to demonstrate that semisimple UU B S-algebras form
a variety.

The following result will be used in the subsequent parts of this section.
Lemma 4.1 In UBS the following identity holds true:
(U6) V(Vz — y) =Vz — Vy.

Proof. By U5, U2 and B10 we have that Vz — Yy = V(Vz — Vy) <
V(Vz — y). On the other hand, by U3, U4 and B3 it follows that V(Vz —
y) AVz =VY(Vz Ay) < Vy and so Y(Vz — y) < Vo — Vy. O

Taking into account a well known result obtained by A. Monteiro [8] and
in order to characterize semisimple algebras, we define a new binary operation
= on a UBS-algebra A by means of the formula: z=7y = Vz — y and we
call it weak implication.

Lemma 4.2 The weak implication verifies the following properties:
(I1) z=z =1,

(I2) z=(y=2z) =1,

(I3) (z=(y=2))= ((z=y)=(z=2)) = 1,

(4) 1=z =z,

(

I5) 2=>Vz =1,

(I6) z <y implies =y = 1.

Proof. We only prove

(I3) By the definition of = and U6 we have that (z = y) = (z = 2) =
VVz > y) = (Vo = 2) = (Vo > Vy) > (Vo — 2) =Vz — (Vy — 2) = 5=
(y=z). Then by I1 we conclude the proof. 0

Definition 4.1 Let A € UBS. A subset D of A is a U-deductive system
(U~d.s.) if D verifies:
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(D1) 1€ D,
(D2) z,z2 - ye D implyy € D,

(D3) z € D impliesVx € D.

It is easy to see that the notions of U-filter and U-d.s. are equivalent.

Definition 4.2 Let A € UBS. A subset D of A is a weak deductive
system (w.d.s.) if D satisfies D1 and

(D'2) z,z=y €D imply y € D.

Lemma 4.3 Let A € UBS and D C A. Then the following properties are
equivalent:

(i) D is aU—-d.s.,
(ii) D is a w.d.s..

Proof. (i)=(ii): Suppose that z, 1=y =Vz — y € D. Then by D3, we
have that Yz € D and so by D2 we get that y € D.

(ii)=>(i): It is simple to see that D3 follows from I5 and D’2. Suppose
now that (1) z, £ — y € D. Since z — y < z =y, by I6 we have that
(¢ > y)=(z=y) € D, and from (1) and D'2 we get that y € D. O

Now, we are ready to determine semisimple U/ BS-algebras.

Lemma 4.4 Let Ac UBS and z,y € A. Then the following identities are
equivalent:

(i) (Vz — Vy) — Vz = Vz,
(i) (Vz - Vy) > V) -z =1,
(ili) (z=y)=>2)=>z =1

Theorem 4.1 Let A € UBS non-trivial. Then the following conditions
are equivalent:
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(i) A is a subdirect product of simple UBS—-algebras,
(ii) A satisfies the identity (Vo — Vy) — Vo =Vz,
(iii) YA 4s a Tarski algebra.

Proof. It is an immediate consequence of [8] and Lemmas 4.1, 4.2, 4.3
and 4.4. O
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