3-GRADINGS OF COMPLEX CLASSICAL LIE ALGEBRAS

DIEGO LAGOS AND MAURICIO GODOY MOLINA

ABSTRACT. The aim of this note is to investigate the algebraic structure that appears on |3|-gradings $\mathfrak{n} = \mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_3$ of a classical Lie algebra \mathfrak{n} over \mathbb{C} . In particular, we prove that the negative part $\mathfrak{n}_{-3} \oplus \mathfrak{n}_{-2} \oplus \mathfrak{n}_{-1}$ of a grading can never be a free nilpotent Lie algebra of step 3, and completely determine the possible reductive algebras \mathfrak{n}_0 for Lie algebras of type A_n .

1. INTRODUCTION

A differential system is a pair (M, D), where M is a differentiable manifold and D is a distribution on M, that is, a subbundle of the tangent bundle of M. These objects appear naturally when studying certain problems related to constrained mechanics, where Mis the configuration space of a mechanical system and D encodes a linear space of admissible velocities. There is a vast amount of literature regarding different points of view of these mathematical objects, since they play an important role in contact geometry [8], sub-Riemannian geometry [1, 9] and geometric control theory [7].

The study of symmetries of differential systems has been an important problem in differential geometry for over a century. For example, the seminal paper by É. Cartan [4] is nowadays understood as a complete study of the symmetries of differential systems with Ma five-dimensional manifold and D of rank two. For the sake of context, let us recall that the group of global symmetries of a differential system (M, D) is

Sym
$$(M,D) = \{ \varphi \colon M \to M \text{ diffeomorphism } | \varphi_*D = D \},\$$

which is very difficult to determine in general. A well-known example is the Legendre transform in \mathbb{R}^{2n+1} , which is a global symmetry for the canonical contact structure D_{cont} (for details, see [8]). As usual in differential geometry, the infinitesimal object is easier to deal with, namely the Lie algebra of infinitesimal symmetries of (M, D), given by

$$sym(M,D) = \{ X \in \mathfrak{X}(M) \mid [X,\Gamma(D)] \subseteq \Gamma(D) \},\$$

where $\Gamma(D)$ denotes the Lie algebra of sections of the distribution *D*. In this context, the infinitesimal symmetries of important differential systems can be found explicitly; for example, sym(\mathbb{R}^{2n+1} , D_{cont}) is the infinite-dimensional jet space $J(\mathbb{R}^{2n+1})$.

The search for a way to determine the infinitesimal symmetries of special differential systems has proved fruitful over the years, especially as a consequence of the fundamental work by Tanaka [11], where an explicit linear algebraic procedure is given to determine $\text{sym}(N, \mathfrak{n}_{-1})$ in the case where N is the (unique, up to isomorphism, connected and simply connected) nilpotent Lie group associated to a graded nilpotent Lie algebra $\mathfrak{n} = \mathfrak{n}_{-\mu} \oplus \cdots \oplus \mathfrak{n}_{-1}$. This process is referred to as *Tanaka prolongation*.

Using techniques from parabolic geometry (see [3]), the study of these very particular spaces of infinitesimal symmetries is related to |s|-gradings of semisimple Lie algebras.

²⁰²⁰ Mathematics Subject Classification. Primary 17B70; Secondary 17B20, 17B30.

This research was partially supported by grant FONDECYT #1181084.

The aim of this short note is to provide some details in the case of s = 3 for the classical Lie algebras. Additionally, from a different point of view, we can ask whether the nilpotent part of a |3|-grading is a Lie algebra of a certain kind (an idea exploited in [5] for the case of |2|-gradings). Here we present some preliminary results concerning the free nilpotent Lie algebras of step 3, which can be seen as a more concrete alternative to the general result obtained in [12]. Our complete study of |3|-gradings for all simple Lie algebras is in its final stage and will appear in print elsewhere.

2. Preliminaries

Let \mathfrak{n} be a complex simple Lie algebra and $s \ge 1$ an integer. An |s|-grading of \mathfrak{n} is a decomposition $\mathfrak{n} = \mathfrak{n}_{-s} \oplus \cdots \oplus \mathfrak{n}_s$ such that:

- (1) $[n_p, n_q] \subseteq n_{p+q}$, where we add that $n_p = \{0\}$ for |p| > s;
- (2) the subalgebra $\mathfrak{n}_{-} = \mathfrak{n}_{-s} \oplus \cdots \oplus \mathfrak{n}_{-1}$ is generated by \mathfrak{n}_{-1} ;
- (3) $\mathfrak{n}_{-s} \neq \{0\}$ and $\mathfrak{n}_s \neq \{0\}$.

Remark 2.1. Given an |s|-grading $\mathfrak{n} = \mathfrak{n}_{-s} \oplus \cdots \oplus \mathfrak{n}_s$, the term \mathfrak{n}_0 is a Lie subalgebra of \mathfrak{n} and the Killing form of \mathfrak{n} restricted to $\mathfrak{n}_i \times \mathfrak{n}_{-i}$ $(i = 1, \ldots, s)$ is nondegenerate. In particular, we have $n_{-i} \cong n_i^*$ for all $i = 1, \ldots, s$. For further details, see [3].

Let Δ be the set of roots of \mathfrak{n} relative to a Cartan subalgebra \mathfrak{h} and let $\Delta^0 = \{\alpha_1, \ldots, \alpha_n\} \subseteq \Delta$ be the set of simple roots of Δ . Let $\Sigma \subseteq \Delta^0$ be a given subset of simple roots. For $\alpha = \sum a_i \alpha_i \in \Delta$, its Σ -height is

$$ht_{\Sigma}(\alpha) = \sum_{\alpha_i \in \Sigma} a_i.$$

If θ is the highest weight root of \mathfrak{n} , putting $s = ht_{\Sigma}(\theta)$ we define the |s|-grading of \mathfrak{n} determined by Σ via

$$\mathfrak{n}_i = \bigoplus_{ht_{\Sigma}(\alpha)=i} \mathfrak{n}_{\alpha} \quad (i \neq 0) \qquad \text{and} \qquad \mathfrak{n}_0 = \mathfrak{h} \oplus \bigoplus_{ht_{\Sigma}(\alpha)=0} \mathfrak{n}_{\alpha},$$

where n_{α} is the root space associated to the root α .

3. THE [3]-GRADINGS OF COMPLEX CLASSICAL LIE ALGEBRAS

We start this section with a reinterpretation of Theorem 3.2.1 in [3].

Theorem 3.1. Let \mathfrak{n} be a simple Lie algebra with Cartan subalgebra \mathfrak{h} and set of simple roots Δ^0 . Then, the |s|-gradings of \mathfrak{n} are in bijection with the subsets $\Sigma \subseteq \Delta^0$ such that $ht_{\Sigma}(\theta) = s$, where θ is the highest root of \mathfrak{n} .

The highest weight roots for the complex simple Lie algebras are well known and can be easily found in many textbooks, for example in [2]. For the ease of the reader, we summarize these roots for the classical Lie algebras in Table 1.

TABLE 1. Highest weight roots of the classical Lie algebras over \mathbb{C} .

Lie algebra	Highest weight root
$A_n, n \ge 1$	$\alpha_1 + \alpha_2 + \cdots + \alpha_n$
$B_n, n \ge 2$	$\alpha_1+2\alpha_2+2\alpha_3+\cdots+2\alpha_n$
$C_n, n \ge 3$	$2\alpha_1+2\alpha_2+2\alpha_3+\cdots+\alpha_n$
$D_n, n \ge 4$	$\alpha_1 + 2\alpha_2 + 2\alpha_3 + \cdots + 2\alpha_{n-2} + \alpha_{n-1} + \alpha_n$

Given a |3|-grading $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_3$ of a simple Lie algebra \mathfrak{n} , we can compute the dimensions of \mathfrak{n}_{-i} for i = 0, 1, 2, 3.

3.1. The case A_n , $n \ge 4$. Let n be a Lie algebra of type A_n . Since the highest weight root of n is $\alpha_1 + \cdots + \alpha_n$, Theorem 3.1 implies that the |3|-gradings of n are in one-to-one correspondence with the subsets $\sum_{i,j,k} = {\alpha_i, \alpha_j, \alpha_k}$ of simple roots of n, where $1 \le i < j < k \le n$. Using the standard gradation given in [13] we can represent the |3|-grading $n_{-3} \oplus \cdots \oplus n_3$ as follows:

		i	j	k
i	\mathfrak{n}_0	\mathfrak{n}_1	\mathfrak{n}_2	\mathfrak{n}_3
i j	\mathfrak{n}_{-1}	\mathfrak{n}_0	\mathfrak{n}_1	\mathfrak{n}_2
j k	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_0	\mathfrak{n}_1
ĸ	$\left\langle \begin{array}{c} \mathfrak{n}_{-3} \end{array} \right.$	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	n ₀

As a consequence we have the following proposition.

Proposition 3.2. Let \mathfrak{n} be a Lie algebra of type A_n . If $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_3$ is the |3|-grading of \mathfrak{n} determined by $\Sigma_{i,j,k}$, then

$$\begin{split} \dim \mathfrak{n}_{-1} &= i(j-i) + (k-j)(j-i) + (n+1-k)(k-j), \\ \dim \mathfrak{n}_{-2} &= i(k-j) + (n+1-k)(j-i), \\ \dim \mathfrak{n}_{-3} &= i(n+1-k). \end{split}$$

3.2. The case B_n . Let n be a Lie algebra of type B_n . The highest weight root of n is $\alpha_1 + 2\alpha_2 + \cdots + 2\alpha_n$, and so the |3|-gradings $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_3$ of n are in one-to-one correspondence with the subsets $\Sigma_i = {\alpha_1, \alpha_i} \subseteq \Delta^0$, where $2 \le i \le n$. Using the standard gradation given in [13] we can represent the |3|-grading $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_3$ as follows:

		1	i	i	1
1	n ₀	\mathfrak{n}_1	\mathfrak{n}_2	\mathfrak{n}_3	*
i	\mathfrak{n}_{-1}	\mathfrak{n}_0	\mathfrak{n}_1	\mathfrak{n}_2	n ₃
i	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_0	\mathfrak{n}_1	\mathfrak{n}_2
<i>i</i> 1	\mathfrak{n}_{-3}	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_0	\mathfrak{n}_1
÷	*	\mathfrak{n}_{-3}	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	n ₀

As a consequence we have the following proposition.

Proposition 3.3. Let \mathfrak{n} be a Lie algebra of type B_n . If $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_3$ is a |3|-grading of \mathfrak{n} , then

$$\begin{split} \dim \mathfrak{n}_{-1} &= (i-1)(2n+2-2i), \\ \dim \mathfrak{n}_{-2} &= \frac{1}{2}(i-1)(i-2) + (2n+1-2i), \\ \dim \mathfrak{n}_{-3} &= i-1. \end{split}$$

3.3. The case C_n . Let n be a Lie algebra of type C_n . The highest weight root of n is $2\alpha_1 + 2\alpha_2 + \cdots + 2\alpha_{n-1} + \alpha_n$, and so the |3|-gradings $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_3$ of n are in one-to-one correspondence with the subsets $\Sigma_i = \{\alpha_i, \alpha_n\} \subseteq \Delta^0$, where $1 \le i \le n-1$. Using the standard gradation given in [13] we can represent the |3|-grading $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_3$ as follows:

		i	п	i
i	$($ n_0	\mathfrak{n}_1	\mathfrak{n}_2	n ₃
n	\mathfrak{n}_{-1}	\mathfrak{n}_0	\mathfrak{n}_1	\mathfrak{n}_2
i	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_0	\mathfrak{n}_1
·	\mathfrak{n}_{-3}	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	n ₀

As a consequence we have the following proposition.

Proposition 3.4. Let \mathfrak{n} be a Lie algebra of type C_n . If $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_3$ is a |3|-grading of \mathfrak{n} , then

$$\begin{split} \dim \mathfrak{n}_{-1} &= i(n-i) + (n-i) + \frac{1}{2}(n-i)(n-i-1), \\ \dim \mathfrak{n}_{-2} &= i(n-i), \\ \dim \mathfrak{n}_{-3} &= i + \frac{1}{2}i(i-1). \end{split}$$

3.4. The case D_n . Let n be a Lie algebra of type D_n . The highest weight root of n is $\alpha_1 + 2\alpha_2 + 2\alpha_3 + \cdots + 2\alpha_{n-2} + \alpha_{n-1} + \alpha_n$, and so the |3|-gradings of n are in one-to-one correspondence with the following subsets of simple roots of n:

(1) $\Sigma_{i,1} = \{\alpha_1, \alpha_i\},$ (2) $\Sigma_{i,n} = \{\alpha_i, \alpha_n\},$ (3) $\Sigma_{i,n-1} = \{\alpha_i, \alpha_{n-1}\},$ (4) $\Sigma_{1,n-1,n} = \{\alpha_1, \alpha_{n-1}, \alpha_n\},$

where $2 \le i \le n-2$.

There exists an automorphism of the Dynkin diagram that permutes α_{n-1} and α_n , and thus there exists an automorphism of D_n giving an isomorphism between the gradings induced by $\Sigma_{i,n-1}$ and $\Sigma_{i,n}$ (see [6, Chapter 14]). Therefore, in the following proposition we only consider the sets $\Sigma_{i,1} = {\alpha_1, \alpha_i}, \Sigma_{i,n} = {\alpha_i, \alpha_n}$ and $\Sigma_{1,n-1,n} = {\alpha_1, \alpha_{n-1}, \alpha_n}$. Using the standard gradation given in [13] we have:

- 1 i i 1 \mathfrak{n}_0 \mathfrak{n}_1 \mathfrak{n}_2 \mathfrak{n}_3 1 \mathfrak{n}_{-1} \mathfrak{n}_0 \mathfrak{n}_1 \mathfrak{n}_2 \mathfrak{n}_3 i \mathfrak{n}_{-2} \mathfrak{n}_{-1} \mathfrak{n}_0 \mathfrak{n}_1 \mathfrak{n}_2 i \mathfrak{n}_{-3} \mathfrak{n}_0 \mathfrak{n}_1 \mathfrak{n}_{-2} \mathfrak{n}_{-1} 1 \mathfrak{n}_{-3} * \mathfrak{n}_{-2} \mathfrak{n}_{-1} \mathfrak{n}_0
- For $\Sigma_{i,1}$ the |3|-grading is given by

• For $\Sigma_{i,n}$ the |3|-grading is given by

		i	n	i	
i	n ₀	\mathfrak{n}_1	\mathfrak{n}_2	\mathfrak{n}_3	
r n	\mathfrak{n}_{-1}	\mathfrak{n}_0	\mathfrak{n}_1	\mathfrak{n}_2	
i	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_0	\mathfrak{n}_1	
ı	\mathfrak{n}_{-3}	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_0	

• For $\Sigma_{1,n-1,n}$ the |3|-grading is given by

	n-1	n	n n	<i>u</i> −1
<i>n</i> – 1	n ₀	\mathfrak{n}_1	\mathfrak{n}_2	n ₃
n-1	\mathfrak{n}_{-1}	\mathfrak{n}_0	\mathfrak{n}_1	\mathfrak{n}_2
n n-1	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_0	\mathfrak{n}_1
<i>n</i> 1	\mathfrak{n}_{-3}	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_0

As a consequence we have the following proposition.

Proposition 3.5. Let \mathfrak{n} be a Lie algebra of type D_n and let $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_3$ be a |3|-grading of \mathfrak{n} associated to the previous subsets of simple roots of \mathfrak{n} . Then

(1) For $\Sigma_{i,1}$ we have

$$\dim \mathfrak{n}_{-1} = (2n - 2i)(i - 1) + i - 1,$$

$$\dim \mathfrak{n}_{-2} = \frac{1}{2}(i - 1)(i - 2) + (2n - 2i),$$

$$\dim \mathfrak{n}_{-3} = i - 1.$$

(2) For $\Sigma_{i,n}$ we have

$$\begin{split} \dim \mathfrak{n}_{-1} &= \tfrac{1}{2}(n-i)(n-i-1) + i(n-i), \\ \dim \mathfrak{n}_{-2} &= i(n-i), \\ \dim \mathfrak{n}_{-3} &= \tfrac{1}{2}i(i-1). \end{split}$$

(3) For $\Sigma_{1,n-1,n}$ we have

dim
$$\mathfrak{n}_{-1} = 3(n-2)$$
,
dim $\mathfrak{n}_{-2} = 2 + \frac{1}{2}(n-2)(n-3)$,
dim $\mathfrak{n}_{-3} = n-2$.

Remark 3.6. In the case of the exceptional Lie algebras, it is also possible to compute all of these dimensions for all |3|-gradings. To do this, we use the fact that $n_i \cong n_{-i}$ and

$$\mathfrak{n}_i = \bigoplus_{ht_{\Sigma}(\alpha)=i} \mathfrak{g}_{\alpha} \quad (i=1,2,3),$$

where the sum is over all positive roots α with $ht_{\Sigma}(\alpha) = i$.

4. FREE NILPOTENT LIE ALGEBRAS

An important class of nilpotent Lie algebras is given by the free nilpotent Lie algebras of step $s \ge 2$ with *r* generators. These algebras have a very rich combinatorial structure and they are relevant in many areas of mathematics. For a classical in-depth introduction to the subject, see [10].

Definition 4.1. The *free nilpotent Lie algebra of step* $s \ge 2$ *with* r *generators* is the Lie algebra generated by a set $\mathscr{A} = \{x_1, \ldots, x_r\}$ where there are no relations between the x_i 's except for the Jacobi identity and the condition that all brackets of order $\ge s$ are zero. This algebra is denoted by $\mathfrak{F}_{r,s}$.

Example 4.2. The free nilpotent Lie algebra $\mathfrak{F}_{2,2}$ is the Heisenberg algebra of dimension 3.

Any free nilpotent Lie algebra $\mathfrak{F}_{r,s}$, with $r \ge 2$ and $s \ge 2$, is naturally endowed with a Lie algebra grading

$$\mathfrak{F}_{r,s}=\mathfrak{f}_{-s}\oplus\cdots\oplus\mathfrak{f}_{-1},$$

where f_{-1} is the span of \mathscr{A} and f_{-j} is spanned by the Lie brackets of order *j*. Moreover, the dimension of each f_{-j} is given by

$$\dim \mathfrak{f}_{-j} = \frac{1}{j} \sum_{d|j} \mu(d) r^{j/d},$$

where μ is the Möbius function. The proof of this fact can be found in [10, Chapter 4].

In particular, for s = 3 we have

dim
$$f_{-1} = r$$
,
dim $f_{-2} = \frac{1}{2}r(r-1)$,
dim $f_{-3} = \frac{1}{3}(r^3 - r)$.

5. 3-GRADINGS AND FREE NILPOTENT LIE ALGEBRAS

In this section, n denotes a complex simple Lie algebra of type A_n , B_n , C_n or D_n .

Definition 5.1. A graded isomorphism between $\mathfrak{F}_{r,3} = \mathfrak{f}_{-3} \oplus \mathfrak{f}_{-2} \oplus \mathfrak{f}_{-1}$ and the negative part $\mathfrak{n}_{-} = \mathfrak{n}_{-3} \oplus \mathfrak{n}_{-2} \oplus \mathfrak{n}_{-1}$ of a |3|-grading of \mathfrak{n} is a Lie algebra isomorphism

$$\phi:\mathfrak{f}_{-3}\oplus\mathfrak{f}_{-2}\oplus\mathfrak{f}_{-1}\to\mathfrak{n}_{-3}\oplus\mathfrak{n}_{-2}\oplus\mathfrak{n}_{-1}$$

such that $\phi|_{\mathfrak{f}_{-i}}$ is a linear isomorphism between \mathfrak{f}_{-i} and \mathfrak{n}_{-i} for i = 1, 2, 3.

Theorem 5.2. Let \mathfrak{n} be a $|\mathfrak{Z}|$ -grading of a simple Lie algebra of type B_n , C_n or D_n , and let $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_3$ be a $|\mathfrak{Z}|$ -grading of \mathfrak{n} . Then there is no graded isomorphism between $\mathfrak{F}_{r,\mathfrak{Z}}$ and $\mathfrak{n}_- = \mathfrak{n}_{-\mathfrak{Z}} \oplus \mathfrak{n}_{-2} \oplus \mathfrak{n}_{-1}$.

Proof for the case B_n . Suppose that there exists a graded isomorphism $\phi : \mathfrak{F}_{r,3} \to \mathfrak{n}_-$. Then, Proposition 3.3 implies that

$$r = (i-1)(2n+2-2i), \tag{1}$$

$$\frac{r(r-1)}{2} = \frac{(i-1)(i-2)}{2} + (2n+1-2i),$$
(2)

$$\frac{r^3 - r}{3} = i - 1. \tag{3}$$

Combining equalities (1), (2) and (3), we obtain

$$\frac{r(r-1)}{2} = \frac{1}{2} \left(\frac{r^3 - r}{3} - 1 \right) \frac{r^3 - r}{3} + 2n + 1 - 2 \left(\frac{r^3 - r}{3} + 1 \right),$$

which implies that

$$-r^6 + 2r^4 + 15r^3 + 8r^2 - 24r = 36n - 18.$$

For $r \ge 3$ the function $f(r) = -r^6 + 2r^4 + 15r^3 + 8r^2 - 24r$ is negative. For r = 2 the function f takes the value 72, which implies that 36n = 90. This contradicts the assumption that n is an integer.

It follows that there cannot exist graded isomorphisms for n of type B_n .

Remark 5.3. For the Lie algebras of type C_n and D_n stated in Theorem 5.2, the arguments for the nonexistence of graded isomorphisms are also based in simple arithmetic, although they are computationally more involved.

A similar result for the case of Lie algebras of type A_n is also valid, but follows from a different argument. To show it, let us recall the following very simple fact.

Lemma 5.4. Denote by E_{pq} the matrix with a 1 in the position (p,q) and 0's in all other entries. Then

$$[E_{pq}, E_{rs}] = E_{pq}E_{rs} - E_{rs}E_{pq} = \begin{cases} E_{pq} & \text{if } p \neq s, q = r, \\ -E_{qr} & \text{if } p = s, q \neq r, \\ E_{pp} - E_{qq} & \text{if } p = s, q = r, \\ 0 & \text{if } p \neq s, q \neq r. \end{cases}$$

And now we can state and prove a result analogous to Theorem 5.2. This completes the nonexistence of graded isomorphisms for all classical simple Lie algebras.

Theorem 5.5. Let $\mathfrak{n} = \mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_3$ be a |3|-grading of a simple Lie algebra \mathfrak{n} of type A_n . Then there does not exist a graded isomorphism between $\mathfrak{F}_{r,3}$ and $\mathfrak{n}_{-} = \mathfrak{n}_{-3} \oplus \mathfrak{n}_{-2} \oplus \mathfrak{n}_{-1}$.

Proof. We will first show that there are always nontrivial elements $x, y \in \mathfrak{n}_{-1}$ such that [x, y] = 0.

Recall that n_{-1} is described as follows:

$$\mathfrak{n}_{-1} = \left\{ \begin{pmatrix} 0 & 0 & 0 & 0 \\ A & 0 & 0 & 0 \\ 0 & B & 0 & 0 \\ 0 & 0 & C & 0 \end{pmatrix} : A \in M_{(j-i) \times i}, B \in M_{(k-j) \times (j-i)}, C \in M_{(n+1-k) \times (k-j)} \right\}.$$

Consider $x = E_{pq}$ and $y = E_{rs}$, with $p \in \{i+1, ..., j\}$, $q \in \{1, ..., i\}$, $r \in \{k+1, ..., n+1\}$ and $s \in \{j+1, ..., k\}$. Then it is clear that $p \neq s$ and $q \neq r$. Applying Lemma 5.4 we see that these elements satisfy [x, y] = 0.

This obviously implies that a graded isomorphism between $\mathfrak{F}_{r,3}$ and \mathfrak{n}_- cannot exist, since [x, y] should be the image of a nontrivial element of \mathfrak{f}_{-2} .

6. FURTHER RESULTS

We have also been able to describe precisely the subalgebras n_0 for all |3|-gradings of a simple Lie algebra n. These algebras are known to be reductive and their classification follows from the next result, which can be found in [3].

Theorem 6.1. Let $\mathfrak{n} = \mathfrak{n}_{-s} \oplus \cdots \oplus \mathfrak{n}_s$ be an |s|-grading of a simple Lie algebra associated to a subset Σ of simple roots of \mathfrak{n} . The dimension of the center of \mathfrak{n}_0 coincides with the cardinality of Σ , and the Dynkin diagram of the semisimple part \mathfrak{n}_0^{ss} of \mathfrak{n}_0 is obtained by removing all nodes corresponding to the roots in Σ and all edges connected to these nodes.

Using Theorem 3.1 and Theorem 6.1 we obtain Table 2, which shows the structure of n_0 for all possible |3|-gradings of a simple Lie algebra n of type A_n .

Σ	n ₀
$\{\alpha_1, \alpha_2, \alpha_3\}$	$\mathbb{C}^3 \oplus A_{n-3}$
$\{\alpha_1, \alpha_2, \alpha_n\}$	$\mathbb{C}^3 \oplus A_{n-3}$
$\overline{\{\alpha_i,\alpha_{i+1},\alpha_{i+2}\}},$	$\mathbb{C}^3 \oplus A_{i-1} \oplus A_{n-i-2}$
$\frac{2 \le i < n-3}{(2 + i)}$	
$\{ \alpha_i, \alpha_{i+1}, \alpha_k \},\ 2 \leq i \leq n-3,$	$\mathbb{C}^3 \oplus A_{i-1} \oplus A_{k-i-2} \oplus A_{n-k}$
k - (i+1) > 1, k < n-1	$\bigcirc \oplus A_{i-1} \oplus A_{k-i-2} \oplus A_{n-k}$
	$C^3 \oplus A \oplus \Phi$
$\{\alpha_i, \alpha_{i+1}, \alpha_n\}$	$\mathbb{C}^3 \oplus A_{i-1} \oplus A_{n-i-2}$
$\{\alpha_i, \alpha_j, \alpha_k\},\$	
j-i > 1, k-j > 1,	$\mathbb{C}^3 \oplus A_{i-1} \oplus A_{j-i-1} \oplus A_{k-j-1} \oplus A_{n-k}$
$k \le n-1$	
$\{\alpha_i, \alpha_j, \alpha_n\}$	$\mathbb{C}^3 \oplus A_{i-1} \oplus A_{j-i-1} \oplus A_{n-j-1}$

TABLE 2. \mathfrak{n}_0 for algebras of type A_n .

ACKNOWLEDGMENTS

The authors want to thank professor Emilio Lauret for providing the first author with a concrete example that, after further scrutiny, became the proof of Theorem 5.5, which had previously been proved using much more complicated arguments.

References

- A. Agrachev, D. Barilari, and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Studies in Advanced Mathematics, 181, Cambridge University Press, Cambridge, 2020. MR 3971262.
- [2] N. Bourbaki, *Lie Groups and Lie Algebras. Chapters 4–6*, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. MR 1890629.
- [3] A. Čap and J. Slovák, Parabolic Geometries I: Background and General Theory, Mathematical Surveys and Monographs, 154, American Mathematical Society, Providence, RI, 2009. MR 2532439.
- [4] É. Cartan, Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm. Sup. (3) 27 (1910), 109–192. MR 1509120.
- [5] K. Furutani, M. Godoy Molina, I. Markina, T. Morimoto, and A. Vasil'ev, Lie algebras attached to Clifford modules and simple graded Lie algebras, *J. Lie Theory* 28 (2018), no. 3, 843–864. MR 3808896.
- [6] J. E. Humphreys, *Introduction to Lie Algebras and Representation Theory*, Graduate Texts in Mathematics, 9, Springer-Verlag, New York, 1972. MR 0323842.
- [7] V. Jurdjevic, *Geometric Control Theory*, Cambridge Studies in Advanced Mathematics, 52, Cambridge University Press, Cambridge, 1997. MR 1425878.
- [8] A. Kushner, V. Lychagin, and V. Rubtsov, *Contact Geometry and Non-linear Differential Equations*, Encyclopedia of Mathematics and its Applications, 101, Cambridge University Press, Cambridge, 2007. MR 2352610.
- [9] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, Providence, RI, 2002. MR 1867362.
- [10] C. Reutenauer, Free Lie algebras, in *Handbook of Algebra, Vol. 3*, 887–903, Elsevier/North-Holland, Amsterdam, 2003. MR 2035110.
- [11] N. Tanaka, On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ. 10 (1970), 1–82. MR 0266258.
- [12] B. Warhurst, Tanaka prolongation of free Lie algebras, Geom. Dedicata 130 (2007), 59–69. MR 2365778.
- [13] K. Yamaguchi, Differential systems associated with simple graded Lie algebras, in *Progress in Differential Geometry*, 413–494, Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo, 1993. MR 1274961.

(Diego Lagos) UNIVERSIDAD DE LA FRONTERA, DEPARTAMENTO DE MATEMÁTICA Y ESTADÍSTICA, TEMUCO, CHILE

Email address: diego.lagos@ufrontera.cl

(Mauricio Godoy Molina) UNIVERSIDAD DE LA FRONTERA, DEPARTAMENTO DE MATEMÁTICA Y ES-TADÍSTICA, TEMUCO, CHILE

Email address: mauricio.godoy@ufrontera.cl