|3|-GRADINGS OF COMPLEX CLASSICAL LIE ALGEBRAS

DIEGO LAGOS AND MAURICIO GODOY MOLINA

Abstract

The aim of this note is to investigate the algebraic structure that appears on $|3|$-gradings $\mathfrak{n}=\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_{3}$ of a classical Lie algebra \mathfrak{n} over \mathbb{C}. In particular, we prove that the negative part $\mathfrak{n}_{-3} \oplus \mathfrak{n}_{-2} \oplus \mathfrak{n}_{-1}$ of a grading can never be a free nilpotent Lie algebra of step 3 , and completely determine the possible reductive algebras \mathfrak{n}_{0} for Lie algebras of type A_{n}.

1. Introduction

A differential system is a pair (M, D), where M is a differentiable manifold and D is a distribution on M, that is, a subbundle of the tangent bundle of M. These objects appear naturally when studying certain problems related to constrained mechanics, where M is the configuration space of a mechanical system and D encodes a linear space of admissible velocities. There is a vast amount of literature regarding different points of view of these mathematical objects, since they play an important role in contact geometry [8], subRiemannian geometry [1, 9] and geometric control theory [7].

The study of symmetries of differential systems has been an important problem in differential geometry for over a century. For example, the seminal paper by É. Cartan [4] is nowadays understood as a complete study of the symmetries of differential systems with M a five-dimensional manifold and D of rank two. For the sake of context, let us recall that the group of global symmetries of a differential system (M, D) is

$$
\operatorname{Sym}(M, D)=\left\{\varphi: M \rightarrow M \text { diffeomorphism } \mid \varphi_{*} D=D\right\}
$$

which is very difficult to determine in general. A well-known example is the Legendre transform in $\mathbb{R}^{2 n+1}$, which is a global symmetry for the canonical contact structure $D_{\text {cont }}$ (for details, see [8]). As usual in differential geometry, the infinitesimal object is easier to deal with, namely the Lie algebra of infinitesimal symmetries of (M, D), given by

$$
\operatorname{sym}(M, D)=\{X \in \mathfrak{X}(M) \mid[X, \Gamma(D)] \subseteq \Gamma(D)\}
$$

where $\Gamma(D)$ denotes the Lie algebra of sections of the distribution D. In this context, the infinitesimal symmetries of important differential systems can be found explicitly; for example, $\operatorname{sym}\left(\mathbb{R}^{2 n+1}, D_{\text {cont }}\right)$ is the infinite-dimensional jet space $J\left(\mathbb{R}^{2 n+1}\right)$.

The search for a way to determine the infinitesimal symmetries of special differential systems has proved fruitful over the years, especially as a consequence of the fundamental work by Tanaka [11], where an explicit linear algebraic procedure is given to determine $\operatorname{sym}\left(N, \mathfrak{n}_{-1}\right)$ in the case where N is the (unique, up to isomorphism, connected and simply connected) nilpotent Lie group associated to a graded nilpotent Lie algebra $\mathfrak{n}=\mathfrak{n}_{-\mu} \oplus \cdots \oplus$ \mathfrak{n}_{-1}. This process is referred to as Tanaka prolongation.

Using techniques from parabolic geometry (see [3]), the study of these very particular spaces of infinitesimal symmetries is related to $|s|$-gradings of semisimple Lie algebras.

[^0]The aim of this short note is to provide some details in the case of $s=3$ for the classical Lie algebras. Additionally, from a different point of view, we can ask whether the nilpotent part of a $|3|$-grading is a Lie algebra of a certain kind (an idea exploited in [5] for the case of $|2|$-gradings). Here we present some preliminary results concerning the free nilpotent Lie algebras of step 3, which can be seen as a more concrete alternative to the general result obtained in [12]. Our complete study of $|3|$-gradings for all simple Lie algebras is in its final stage and will appear in print elsewhere.

2. Preliminaries

Let \mathfrak{n} be a complex simple Lie algebra and $s \geq 1$ an integer. An $|s|$-grading of \mathfrak{n} is a decomposition $\mathfrak{n}=\mathfrak{n}_{-s} \oplus \cdots \oplus \mathfrak{n}_{s}$ such that:
(1) $\left[\mathfrak{n}_{p}, \mathfrak{n}_{q}\right] \subseteq \mathfrak{n}_{p+q}$, where we add that $\mathfrak{n}_{p}=\{0\}$ for $|p|>s$;
(2) the subalgebra $\mathfrak{n}_{-}=\mathfrak{n}_{-s} \oplus \cdots \oplus \mathfrak{n}_{-1}$ is generated by \mathfrak{n}_{-1};
(3) $\mathfrak{n}_{-s} \neq\{0\}$ and $\mathfrak{n}_{s} \neq\{0\}$.

Remark 2.1. Given an $|s|$-grading $\mathfrak{n}=\mathfrak{n}_{-s} \oplus \cdots \oplus \mathfrak{n}_{s}$, the term \mathfrak{n}_{0} is a Lie subalgebra of \mathfrak{n} and the Killing form of \mathfrak{n} restricted to $\mathfrak{n}_{i} \times \mathfrak{n}_{-i}(i=1, \ldots, s)$ is nondegenerate. In particular, we have $n_{-i} \cong n_{i}^{*}$ for all $i=1, \ldots, s$. For further details, see [3].

Let Δ be the set of roots of \mathfrak{n} relative to a Cartan subalgebra \mathfrak{h} and let $\Delta^{0}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq$ Δ be the set of simple roots of Δ. Let $\Sigma \subseteq \Delta^{0}$ be a given subset of simple roots. For $\alpha=\sum a_{i} \alpha_{i} \in \Delta$, its Σ-height is

$$
h t_{\Sigma}(\alpha)=\sum_{\alpha_{i} \in \Sigma} a_{i}
$$

If θ is the highest weight root of \mathfrak{n}, putting $s=h t_{\Sigma}(\theta)$ we define the $|s|$-grading of \mathfrak{n} determined by Σ via

$$
\mathfrak{n}_{i}=\bigoplus_{h t_{\Sigma}(\alpha)=i} \mathfrak{n}_{\alpha} \quad(i \neq 0) \quad \text { and } \quad \mathfrak{n}_{0}=\mathfrak{h} \oplus \bigoplus_{h t_{\Sigma}(\alpha)=0} \mathfrak{n}_{\alpha}
$$

where \mathfrak{n}_{α} is the root space associated to the root α.

3. The |3|-GRADINGS of COMPLEX CLASSICAL LIE ALGEBRAS

We start this section with a reinterpretation of Theorem 3.2.1 in [3].
Theorem 3.1. Let \mathfrak{n} be a simple Lie algebra with Cartan subalgebra \mathfrak{h} and set of simple roots Δ^{0}. Then, the $|s|$-gradings of \mathfrak{n} are in bijection with the subsets $\Sigma \subseteq \Delta^{0}$ such that $h t_{\Sigma}(\theta)=s$, where θ is the highest root of \mathfrak{n}.

The highest weight roots for the complex simple Lie algebras are well known and can be easily found in many textbooks, for example in [2]. For the ease of the reader, we summarize these roots for the classical Lie algebras in Table 1.

TABLE 1. Highest weight roots of the classical Lie algebras over \mathbb{C}.

Lie algebra	Highest weight root
$A_{n}, n \geq 1$	$\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$
$B_{n}, n \geq 2$	$\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\cdots+2 \alpha_{n}$
$C_{n}, n \geq 3$	$2 \alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\cdots+\alpha_{n}$
$D_{n}, n \geq 4$	$\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}$

Given a $|3|$-grading $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_{3}$ of a simple Lie algebra \mathfrak{n}, we can compute the dimensions of \mathfrak{n}_{-i} for $i=0,1,2,3$.
3.1. The case $A_{n}, n \geq 4$. Let \mathfrak{n} be a Lie algebra of type A_{n}. Since the highest weight root of \mathfrak{n} is $\alpha_{1}+\cdots+\alpha_{n}$, Theorem 3.1 implies that the $|3|$-gradings of \mathfrak{n} are in one-to-one correspondence with the subsets $\Sigma_{i, j, k}=\left\{\alpha_{i}, \alpha_{j}, \alpha_{k}\right\}$ of simple roots of \mathfrak{n}, where $1 \leq i<$ $j<k \leq n$. Using the standard gradation given in [13] we can represent the $|3|$-grading $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_{3}$ as follows:

As a consequence we have the following proposition.
Proposition 3.2. Let \mathfrak{n} be a Lie algebra of type A_{n}. If $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_{3}$ is the $|3|$-grading of \mathfrak{n} determined by $\Sigma_{i, j, k}$, then

$$
\begin{aligned}
\operatorname{dim} \mathfrak{n}_{-1} & =i(j-i)+(k-j)(j-i)+(n+1-k)(k-j) \\
\operatorname{dim} \mathfrak{n}_{-2} & =i(k-j)+(n+1-k)(j-i) \\
\operatorname{dim} \mathfrak{n}_{-3} & =i(n+1-k)
\end{aligned}
$$

3.2. The case B_{n}. Let \mathfrak{n} be a Lie algebra of type B_{n}. The highest weight root of \mathfrak{n} is $\alpha_{1}+$ $2 \alpha_{2}+\cdots+2 \alpha_{n}$, and so the $|3|$-gradings $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_{3}$ of \mathfrak{n} are in one-to-one correspondence with the subsets $\Sigma_{i}=\left\{\alpha_{1}, \alpha_{i}\right\} \subseteq \Delta^{0}$, where $2 \leq i \leq n$. Using the standard gradation given in [13] we can represent the $|3|$-grading $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_{3}$ as follows:

1		\mathfrak{n}_{1}	\mathfrak{n}_{2}	\mathfrak{n}_{3}	*
i	\mathfrak{n}_{-1}	\mathfrak{n}_{0}	\mathfrak{n}_{1}	\mathfrak{n}_{2}	\mathfrak{n}_{3}
	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_{0}	\mathfrak{n}_{1}	\mathfrak{n}_{2}
i	\mathfrak{n}_{-3}	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_{0}	\mathfrak{n}_{1}
1	*	\mathfrak{n}_{-3}	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_{0}

As a consequence we have the following proposition.

Proposition 3.3. Let \mathfrak{n} be a Lie algebra of type B_{n}. If $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_{3}$ is a $|3|$-grading of \mathfrak{n}, then

$$
\begin{aligned}
\operatorname{dim} \mathfrak{n}_{-1} & =(i-1)(2 n+2-2 i) \\
\operatorname{dim} \mathfrak{n}_{-2} & =\frac{1}{2}(i-1)(i-2)+(2 n+1-2 i) \\
\operatorname{dim} \mathfrak{n}_{-3} & =i-1
\end{aligned}
$$

3.3. The case C_{n}. Let \mathfrak{n} be a Lie algebra of type C_{n}. The highest weight root of \mathfrak{n} is $2 \alpha_{1}+2 \alpha_{2}+\cdots+2 \alpha_{n-1}+\alpha_{n}$, and so the $|3|$-gradings $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_{3}$ of \mathfrak{n} are in one-toone correspondence with the subsets $\Sigma_{i}=\left\{\alpha_{i}, \alpha_{n}\right\} \subseteq \Delta^{0}$, where $1 \leq i \leq n-1$. Using the standard gradation given in [13] we can represent the $|3|$-grading $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_{3}$ as follows:

i	\mathfrak{n}_{0}	\mathfrak{n}_{1}	\mathfrak{n}_{2}	\mathfrak{n}_{3}
i	\mathfrak{n}_{-1}	\mathfrak{n}_{0}	\mathfrak{n}_{1}	\mathfrak{n}_{2}
n	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_{0}	\mathfrak{n}_{1}
i	\mathfrak{n}_{-3}	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_{0}

As a consequence we have the following proposition.
Proposition 3.4. Let \mathfrak{n} be a Lie algebra of type C_{n}. If $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_{3}$ is a $|3|$-grading of \mathfrak{n}, then

$$
\begin{aligned}
\operatorname{dim}_{-1} & =i(n-i)+(n-i)+\frac{1}{2}(n-i)(n-i-1) \\
\operatorname{dim} \mathfrak{n}_{-2} & =i(n-i) \\
\operatorname{dim} \mathfrak{n}_{-3} & =i+\frac{1}{2} i(i-1)
\end{aligned}
$$

3.4. The case D_{n}. Let \mathfrak{n} be a Lie algebra of type D_{n}. The highest weight root of \mathfrak{n} is $\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}$, and so the $|3|$-gradings of \mathfrak{n} are in one-to-one correspondence with the the following subsets of simple roots of \mathfrak{n} :
(1) $\Sigma_{i, 1}=\left\{\alpha_{1}, \alpha_{i}\right\}$,
(3) $\Sigma_{i, n-1}=\left\{\alpha_{i}, \alpha_{n-1}\right\}$,
(2) $\Sigma_{i, n}=\left\{\alpha_{i}, \alpha_{n}\right\}$,
(4) $\Sigma_{1, n-1, n}=\left\{\alpha_{1}, \alpha_{n-1}, \alpha_{n}\right\}$,
where $2 \leq i \leq n-2$.
There exists an automorphism of the Dynkin diagram that permutes α_{n-1} and α_{n}, and thus there exists an automorphism of D_{n} giving an isomorphism between the gradings induced by $\Sigma_{i, n-1}$ and $\Sigma_{i, n}$ (see [6, Chapter 14]). Therefore, in the following proposition we only consider the sets $\Sigma_{i, 1}=\left\{\alpha_{1}, \alpha_{i}\right\}, \Sigma_{i, n}=\left\{\alpha_{i}, \alpha_{n}\right\}$ and $\Sigma_{1, n-1, n}=\left\{\alpha_{1}, \alpha_{n-1}, \alpha_{n}\right\}$. Using the standard gradation given in [13] we have:

- For $\Sigma_{i, 1}$ the $|3|$-grading is given by

		\mathfrak{n}_{1}	\mathfrak{n}_{2}	\mathfrak{n}_{3}	*
	\mathfrak{n}_{-1}	\mathfrak{n}_{0}	\mathfrak{n}_{1}	\mathfrak{n}_{2}	\mathfrak{n}_{3}
	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_{0}	\mathfrak{n}_{1}	\mathfrak{n}_{2}
	$\mathfrak{n}-3$	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_{0}	\mathfrak{n}_{1}
	*	\mathfrak{n}_{-3}	\mathfrak{n}_{-2}	\mathfrak{n}_{-1}	\mathfrak{n}_{0}

- For $\Sigma_{i, n}$ the $|3|$-grading is given by

i	\mathfrak{n}_{0}	\mathfrak{n}_{1}	\mathfrak{n}_{2}	\mathfrak{n}_{3}
	$\mathfrak{n}-1$	\mathfrak{n}_{0}	\mathfrak{n}_{1}	\mathfrak{n}_{2}
n	$\mathfrak{n}-2$	$\mathfrak{n}-1$	\mathfrak{n}_{0}	\mathfrak{n}_{1}
i	$\mathfrak{n}-3$	\mathfrak{n}_{-2}	$\mathfrak{n}-1$	\mathfrak{n}_{0}

- For $\Sigma_{1, n-1, n}$ the $|3|$-grading is given by

As a consequence we have the following proposition.

Proposition 3.5. Let \mathfrak{n} be a Lie algebra of type D_{n} and let $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_{3}$ be a $|3|$-grading of \mathfrak{n} associated to the previous subsets of simple roots of \mathfrak{n}. Then
(1) For $\Sigma_{i, 1}$ we have

$$
\begin{aligned}
\operatorname{dim} \mathfrak{n}_{-1} & =(2 n-2 i)(i-1)+i-1 \\
\operatorname{dim} \mathfrak{n}_{-2} & =\frac{1}{2}(i-1)(i-2)+(2 n-2 i) \\
\operatorname{dim} \mathfrak{n}_{-3} & =i-1
\end{aligned}
$$

(2) For $\Sigma_{i, n}$ we have

$$
\begin{aligned}
\operatorname{dim} \mathfrak{n}_{-1} & =\frac{1}{2}(n-i)(n-i-1)+i(n-i), \\
\operatorname{dim} \mathfrak{n}_{-2} & =i(n-i) \\
\operatorname{dim} \mathfrak{n}_{-3} & =\frac{1}{2} i(i-1)
\end{aligned}
$$

(3) For $\Sigma_{1, n-1, n}$ we have

$$
\begin{aligned}
\operatorname{dim} \mathfrak{n}_{-1} & =3(n-2) \\
\operatorname{dim} \mathfrak{n}_{-2} & =2+\frac{1}{2}(n-2)(n-3) \\
\operatorname{dim} \mathfrak{n}_{-3} & =n-2
\end{aligned}
$$

Remark 3.6. In the case of the exceptional Lie algebras, it is also possible to compute all of these dimensions for all $|3|$-gradings. To do this, we use the fact that $\mathfrak{n}_{i} \cong \mathfrak{n}_{-i}$ and

$$
\mathfrak{n}_{i}=\bigoplus_{h t_{\Sigma}(\alpha)=i} \mathfrak{g}_{\alpha} \quad(i=1,2,3)
$$

where the sum is over all positive roots α with $h t_{\Sigma}(\alpha)=i$.

4. Free nilpotent Lie algebras

An important class of nilpotent Lie algebras is given by the free nilpotent Lie algebras of step $s \geq 2$ with r generators. These algebras have a very rich combinatorial structure and they are relevant in many areas of mathematics. For a classical in-depth introduction to the subject, see [10].

Definition 4.1. The free nilpotent Lie algebra of step $s \geq 2$ with r generators is the Lie algebra generated by a set $\mathscr{A}=\left\{x_{1}, \ldots, x_{r}\right\}$ where there are no relations between the x_{i} 's except for the Jacobi identity and the condition that all brackets of order $\geq s$ are zero. This algebra is denoted by $\mathfrak{F}_{r, s}$.
Example 4.2. The free nilpotent Lie algebra $\mathfrak{F}_{2,2}$ is the Heisenberg algebra of dimension 3.
Any free nilpotent Lie algebra $\mathfrak{F}_{r, s}$, with $r \geq 2$ and $s \geq 2$, is naturally endowed with a Lie algebra grading

$$
\mathfrak{F}_{r, s}=\mathfrak{f}_{-s} \oplus \cdots \oplus \mathfrak{f}_{-1}
$$

where \mathfrak{f}_{-1} is the span of \mathscr{A} and \mathfrak{f}_{-j} is spanned by the Lie brackets of order j. Moreover, the dimension of each \mathfrak{f}_{-j} is given by

$$
\operatorname{dim} \mathfrak{f}_{-j}=\frac{1}{j} \sum_{d \mid j} \mu(d) r^{j / d},
$$

where μ is the Möbius function. The proof of this fact can be found in [10, Chapter 4].

In particular, for $s=3$ we have

$$
\begin{aligned}
\operatorname{dim} \mathfrak{f}_{-1} & =r \\
\operatorname{dim} \mathfrak{f}_{-2} & =\frac{1}{2} r(r-1) \\
\operatorname{dim} \mathfrak{f}_{-3} & =\frac{1}{3}\left(r^{3}-r\right)
\end{aligned}
$$

5. |3|-GRADINGS AND FREE NILPOTENT LIE ALGEBRAS

In this section, \mathfrak{n} denotes a complex simple Lie algebra of type A_{n}, B_{n}, C_{n} or D_{n}.
Definition 5.1. A graded isomorphism between $\mathfrak{F}_{r, 3}=\mathfrak{f}_{-3} \oplus \mathfrak{f}_{-2} \oplus \mathfrak{f}_{-1}$ and the negative part $\mathfrak{n}_{-}=\mathfrak{n}_{-3} \oplus \mathfrak{n}_{-2} \oplus \mathfrak{n}_{-1}$ of a $|3|$-grading of \mathfrak{n} is a Lie algebra isomorphism

$$
\phi: \mathfrak{f}_{-3} \oplus \mathfrak{f}_{-2} \oplus \mathfrak{f}_{-1} \rightarrow \mathfrak{n}_{-3} \oplus \mathfrak{n}_{-2} \oplus \mathfrak{n}_{-1}
$$

such that $\left.\phi\right|_{\mathfrak{f}_{-i}}$ is a linear isomorphism between \mathfrak{f}_{-i} and \mathfrak{n}_{-i} for $i=1,2,3$.
Theorem 5.2. Let \mathfrak{n} be a $|3|$-grading of a simple Lie algebra of type B_{n}, C_{n} or D_{n}, and let $\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_{3}$ be a $|3|$-grading of \mathfrak{n}. Then there is no graded isomorphism between $\mathfrak{F}_{r, 3}$ and $\mathfrak{n}_{-}=\mathfrak{n}_{-3} \oplus \mathfrak{n}_{-2} \oplus \mathfrak{n}_{-1}$.

Proof for the case B_{n}. Suppose that there exists a graded isomorphism $\phi: \mathfrak{F}_{r, 3} \rightarrow \mathfrak{n}_{-}$. Then, Proposition 3.3 implies that

$$
\begin{align*}
r & =(i-1)(2 n+2-2 i), \tag{1}\\
\frac{r(r-1)}{2} & =\frac{(i-1)(i-2)}{2}+(2 n+1-2 i), \tag{2}\\
\frac{r^{3}-r}{3} & =i-1 . \tag{3}
\end{align*}
$$

Combining equalities (1), (2) and (3), we obtain

$$
\frac{r(r-1)}{2}=\frac{1}{2}\left(\frac{r^{3}-r}{3}-1\right) \frac{r^{3}-r}{3}+2 n+1-2\left(\frac{r^{3}-r}{3}+1\right)
$$

which implies that

$$
-r^{6}+2 r^{4}+15 r^{3}+8 r^{2}-24 r=36 n-18
$$

For $r \geq 3$ the function $f(r)=-r^{6}+2 r^{4}+15 r^{3}+8 r^{2}-24 r$ is negative. For $r=2$ the function f takes the value 72 , which implies that $36 n=90$. This contradicts the assumption that n is an integer.

It follows that there cannot exist graded isomorphisms for \mathfrak{n} of type B_{n}.
Remark 5.3. For the Lie algebras of type C_{n} and D_{n} stated in Theorem 5.2, the arguments for the nonexistence of graded isomorphisms are also based in simple arithmetic, although they are computationally more involved.

A similar result for the case of Lie algebras of type A_{n} is also valid, but follows from a different argument. To show it, let us recall the following very simple fact.

Lemma 5.4. Denote by $E_{p q}$ the matrix with a 1 in the position (p, q) and 0 's in all other entries. Then

$$
\left[E_{p q}, E_{r s}\right]=E_{p q} E_{r s}-E_{r s} E_{p q}= \begin{cases}E_{p q} & \text { if } p \neq s, q=r \\ -E_{q r} & \text { if } p=s, q \neq r \\ E_{p p}-E_{q q} & \text { if } p=s, q=r \\ 0 & \text { if } p \neq s, q \neq r\end{cases}
$$

And now we can state and prove a result analogous to Theorem 5.2. This completes the nonexistence of graded isomorphisms for all classical simple Lie algebras.

Theorem 5.5. Let $\mathfrak{n}=\mathfrak{n}_{-3} \oplus \cdots \oplus \mathfrak{n}_{3}$ be a $|3|$-grading of a simple Lie algebra \mathfrak{n} of type A_{n}. Then there does not exist a graded isomorphism between $\mathfrak{F}_{r, 3}$ and $\mathfrak{n}_{-}=\mathfrak{n}_{-3} \oplus \mathfrak{n}_{-2} \oplus \mathfrak{n}_{-1}$.
Proof. We will first show that there are always nontrivial elements $x, y \in \mathfrak{n}_{-1}$ such that $[x, y]=0$.

Recall that \mathfrak{n}_{-1} is described as follows:

$$
\mathfrak{n}_{-1}=\left\{\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
A & 0 & 0 & 0 \\
0 & B & 0 & 0 \\
0 & 0 & C & 0
\end{array}\right): A \in M_{(j-i) \times i}, B \in M_{(k-j) \times(j-i)}, C \in M_{(n+1-k) \times(k-j)}\right\} .
$$

Consider $x=E_{p q}$ and $y=E_{r s}$, with $p \in\{i+1, \ldots, j\}, q \in\{1, \ldots, i\}, r \in\{k+1, \ldots, n+1\}$ and $s \in\{j+1, \ldots, k\}$. Then it is clear that $p \neq s$ and $q \neq r$. Applying Lemma 5.4 we see that these elements satisfy $[x, y]=0$.

This obviously implies that a graded isomorphism between $\mathfrak{F}_{r, 3}$ and \mathfrak{n}_{-}cannot exist, since $[x, y]$ should be the image of a nontrivial element of \mathfrak{f}_{-2}.

6. Further results

We have also been able to describe precisely the subalgebras \mathfrak{n}_{0} for all |3|-gradings of a simple Lie algebra \mathfrak{n}. These algebras are known to be reductive and their classification follows from the next result, which can be found in [3].
Theorem 6.1. Let $\mathfrak{n}=\mathfrak{n}_{-s} \oplus \cdots \oplus \mathfrak{n}_{s}$ be an $|s|-$ grading of a simple Lie algebra associated to a subset Σ of simple roots of \mathfrak{n}. The dimension of the center of \mathfrak{n}_{0} coincides with the cardinality of Σ, and the Dynkin diagram of the semisimple part $\mathfrak{n}_{0}^{s s}$ of \mathfrak{n}_{0} is obtained by removing all nodes corresponding to the roots in Σ and all edges connected to these nodes.

Using Theorem 3.1 and Theorem 6.1 we obtain Table 2, which shows the structure of \mathfrak{n}_{0} for all possible $|3|$-gradings of a simple Lie algebra \mathfrak{n} of type A_{n}.

TABLE 2. \mathfrak{n}_{0} for algebras of type A_{n}.

Σ	\mathfrak{n}_{0}
$\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$	$\mathbb{C}^{3} \oplus A_{n-3}$
$\left\{\alpha_{1}, \alpha_{2}, \alpha_{n}\right\}$	$\mathbb{C}^{3} \oplus A_{n-3}$
$\begin{aligned} & \left\{\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}\right\}, \\ & 2 \leq i<n-3 \end{aligned}$	$\mathbb{C}^{3} \oplus A_{i-1} \oplus A_{n-i-2}$
$\begin{aligned} & \left\{\alpha_{i}, \alpha_{i+1}, \alpha_{k}\right\}, \\ & 2 \leq i \leq n-3, \\ & \|k-(i+1)\|>1, \\ & k \leq n-1 \end{aligned}$	$\mathbb{C}^{3} \oplus A_{i-1} \oplus A_{k-i-2} \oplus A_{n-k}$
$\left\{\alpha_{i}, \alpha_{i+1}, \alpha_{n}\right\}$	$\mathbb{C}^{3} \oplus A_{i-1} \oplus A_{n-i-2}$
$\begin{aligned} & \left\{\alpha_{i}, \alpha_{j}, \alpha_{k}\right\}, \\ & \|j-i\|>1,\|k-j\|>1, \\ & k \leq n-1 \end{aligned}$	$\mathbb{C}^{3} \oplus A_{i-1} \oplus A_{j-i-1} \oplus A_{k-j-1} \oplus A_{n-k}$
$\left\{\alpha_{i}, \alpha_{j}, \alpha_{n}\right\}$	$\mathbb{C}^{3} \oplus A_{i-1} \oplus A_{j-i-1} \oplus A_{n-j-1}$

Acknowledgments

The authors want to thank professor Emilio Lauret for providing the first author with a concrete example that, after further scrutiny, became the proof of Theorem 5.5, which had previously been proved using much more complicated arguments.

References

[1] A. Agrachev, D. Barilari, and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Studies in Advanced Mathematics, 181, Cambridge University Press, Cambridge, 2020. MR 3971262.
[2] N. Bourbaki, Lie Groups and Lie Algebras. Chapters 4-6, Elements of Mathematics (Berlin), SpringerVerlag, Berlin, 2002. MR 1890629.
[3] A. Cap and J. Slovák, Parabolic Geometries I: Background and General Theory, Mathematical Surveys and Monographs, 154, American Mathematical Society, Providence, RI, 2009. MR 2532439.
[4] É. Cartan, Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm. Sup. (3) 27 (1910), 109-192. MR 1509120.
[5] K. Furutani, M. Godoy Molina, I. Markina, T. Morimoto, and A. Vasil'ev, Lie algebras attached to Clifford modules and simple graded Lie algebras, J. Lie Theory 28 (2018), no. 3, 843-864. MR 3808896.
[6] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York, 1972. MR 0323842.
[7] V. Jurdjevic, Geometric Control Theory, Cambridge Studies in Advanced Mathematics, 52, Cambridge University Press, Cambridge, 1997. MR 1425878.
[8] A. Kushner, V. Lychagin, and V. Rubtsov, Contact Geometry and Non-linear Differential Equations, Encyclopedia of Mathematics and its Applications, 101, Cambridge University Press, Cambridge, 2007. MR 2352610.
[9] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, Providence, RI, 2002. MR 1867362.
[10] C. Reutenauer, Free Lie algebras, in Handbook of Algebra, Vol. 3, 887-903, Elsevier/North-Holland, Amsterdam, 2003. MR 2035110.
[11] N. Tanaka, On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ. 10 (1970), 1-82. MR 0266258.
[12] B. Warhurst, Tanaka prolongation of free Lie algebras, Geom. Dedicata 130 (2007), 59-69. MR 2365778.
[13] K. Yamaguchi, Differential systems associated with simple graded Lie algebras, in Progress in Differential Geometry, 413-494, Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo, 1993. MR 1274961.
(Diego Lagos) Universidad de la Frontera, Departamento de Matemática y Estadística, Temuco, Chile

Email address: diego.lagos@ufrontera.cl
(Mauricio Godoy Molina) Universidad de la Frontera, Departamento de Matemática y Estadística, Temuco, Chile

Email address: mauricio.godoy@ufrontera.cl

[^0]: 2020 Mathematics Subject Classification. Primary 17B70; Secondary 17B20, 17B30.
 This research was partially supported by grant FONDECYT \#1181084.

