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|3|-GRADINGS OF COMPLEX CLASSICAL LIE ALGEBRAS

DIEGO LAGOS AND MAURICIO GODOY MOLINA

ABSTRACT. The aim of this note is to investigate the algebraic structure that appears on
|3|-gradings n= n−3 ⊕·· ·⊕n3 of a classical Lie algebra n over C. In particular, we prove
that the negative part n−3⊕n−2⊕n−1 of a grading can never be a free nilpotent Lie algebra
of step 3, and completely determine the possible reductive algebras n0 for Lie algebras of
type An.

1. INTRODUCTION

A differential system is a pair (M,D), where M is a differentiable manifold and D is
a distribution on M, that is, a subbundle of the tangent bundle of M. These objects ap-
pear naturally when studying certain problems related to constrained mechanics, where M
is the configuration space of a mechanical system and D encodes a linear space of admis-
sible velocities. There is a vast amount of literature regarding different points of view of
these mathematical objects, since they play an important role in contact geometry [8], sub-
Riemannian geometry [1, 9] and geometric control theory [7].

The study of symmetries of differential systems has been an important problem in dif-
ferential geometry for over a century. For example, the seminal paper by É. Cartan [4] is
nowadays understood as a complete study of the symmetries of differential systems with M
a five-dimensional manifold and D of rank two. For the sake of context, let us recall that
the group of global symmetries of a differential system (M,D) is

Sym(M,D) = {ϕ : M → M diffeomorphism | ϕ∗D = D},
which is very difficult to determine in general. A well-known example is the Legendre
transform in R2n+1, which is a global symmetry for the canonical contact structure Dcont
(for details, see [8]). As usual in differential geometry, the infinitesimal object is easier to
deal with, namely the Lie algebra of infinitesimal symmetries of (M,D), given by

sym(M,D) = {X ∈ X(M) | [X ,Γ(D)]⊆ Γ(D)},
where Γ(D) denotes the Lie algebra of sections of the distribution D. In this context, the
infinitesimal symmetries of important differential systems can be found explicitly; for ex-
ample, sym(R2n+1,Dcont) is the infinite-dimensional jet space J(R2n+1).

The search for a way to determine the infinitesimal symmetries of special differential
systems has proved fruitful over the years, especially as a consequence of the fundamental
work by Tanaka [11], where an explicit linear algebraic procedure is given to determine
sym(N,n−1) in the case where N is the (unique, up to isomorphism, connected and simply
connected) nilpotent Lie group associated to a graded nilpotent Lie algebra n= n−µ ⊕·· ·⊕
n−1. This process is referred to as Tanaka prolongation.

Using techniques from parabolic geometry (see [3]), the study of these very particular
spaces of infinitesimal symmetries is related to |s|-gradings of semisimple Lie algebras.
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The aim of this short note is to provide some details in the case of s = 3 for the classical Lie
algebras. Additionally, from a different point of view, we can ask whether the nilpotent part
of a |3|-grading is a Lie algebra of a certain kind (an idea exploited in [5] for the case of
|2|-gradings). Here we present some preliminary results concerning the free nilpotent Lie
algebras of step 3, which can be seen as a more concrete alternative to the general result
obtained in [12]. Our complete study of |3|-gradings for all simple Lie algebras is in its
final stage and will appear in print elsewhere.

2. PRELIMINARIES

Let n be a complex simple Lie algebra and s ≥ 1 an integer. An |s|-grading of n is a
decomposition n= n−s ⊕·· ·⊕ns such that:

(1) [np,nq]⊆ np+q, where we add that np = {0} for |p|> s;
(2) the subalgebra n− = n−s ⊕·· ·⊕n−1 is generated by n−1;
(3) n−s ̸= {0} and ns ̸= {0}.

Remark 2.1. Given an |s|-grading n = n−s ⊕·· ·⊕ns, the term n0 is a Lie subalgebra of n
and the Killing form of n restricted to ni ×n−i (i = 1, . . . ,s) is nondegenerate. In particular,
we have n−i ∼= n∗i for all i = 1, . . . ,s. For further details, see [3].

Let ∆ be the set of roots of n relative to a Cartan subalgebra h and let ∆0 = {α1, . . . ,αn}⊆
∆ be the set of simple roots of ∆. Let Σ ⊆ ∆0 be a given subset of simple roots. For
α = ∑aiαi ∈ ∆, its Σ-height is

htΣ(α) = ∑
αi∈Σ

ai.

If θ is the highest weight root of n, putting s = htΣ(θ) we define the |s|-grading of n
determined by Σ via

ni =
⊕

htΣ(α)=i

nα (i ̸= 0) and n0 = h⊕
⊕

htΣ(α)=0

nα ,

where nα is the root space associated to the root α .

3. THE |3|-GRADINGS OF COMPLEX CLASSICAL LIE ALGEBRAS

We start this section with a reinterpretation of Theorem 3.2.1 in [3].

Theorem 3.1. Let n be a simple Lie algebra with Cartan subalgebra h and set of simple
roots ∆0. Then, the |s|-gradings of n are in bijection with the subsets Σ ⊆ ∆0 such that
htΣ(θ) = s, where θ is the highest root of n.

The highest weight roots for the complex simple Lie algebras are well known and can be
easily found in many textbooks, for example in [2]. For the ease of the reader, we summarize
these roots for the classical Lie algebras in Table 1.

TABLE 1. Highest weight roots of the classical Lie algebras over C.

Lie algebra Highest weight root
An, n ≥ 1 α1 +α2 + · · ·+αn

Bn, n ≥ 2 α1 +2α2 +2α3 + · · ·+2αn

Cn, n ≥ 3 2α1 +2α2 +2α3 + · · ·+αn

Dn, n ≥ 4 α1 +2α2 +2α3 + · · ·+2αn−2 +αn−1 +αn

Given a |3|-grading n−3 ⊕·· ·⊕n3 of a simple Lie algebra n, we can compute the dimen-
sions of n−i for i = 0,1,2,3.
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3.1. The case An, n ≥ 4. Let n be a Lie algebra of type An. Since the highest weight
root of n is α1 + · · ·+αn, Theorem 3.1 implies that the |3|-gradings of n are in one-to-one
correspondence with the subsets Σi, j,k = {αi,α j,αk} of simple roots of n, where 1 ≤ i <
j < k ≤ n. Using the standard gradation given in [13] we can represent the |3|-grading
n−3 ⊕·· ·⊕n3 as follows:

i j k

i

j

k



n0 n1 n2 n3

n−1 n0 n1 n2

n−2 n−1 n0 n1

n−3 n−2 n−1 n0


As a consequence we have the following proposition.

Proposition 3.2. Let n be a Lie algebra of type An. If n−3 ⊕·· ·⊕n3 is the |3|-grading of n
determined by Σi, j,k, then

dimn−1 = i( j− i)+(k− j)( j− i)+(n+1− k)(k− j),

dimn−2 = i(k− j)+(n+1− k)( j− i),

dimn−3 = i(n+1− k).

3.2. The case Bn. Let n be a Lie algebra of type Bn. The highest weight root of n is α1 +
2α2+ · · ·+2αn, and so the |3|-gradings n−3⊕·· ·⊕n3 of n are in one-to-one correspondence
with the subsets Σi = {α1,αi} ⊆ ∆0, where 2 ≤ i ≤ n. Using the standard gradation given
in [13] we can represent the |3|-grading n−3 ⊕·· ·⊕n3 as follows:

1 i i 1

1

i

i

1



n0 n1 n2 n3 ∗

n−1 n0 n1 n2 n3

n−2 n−1 n0 n1 n2

n−3 n−2 n−1 n0 n1

∗ n−3 n−2 n−1 n0


As a consequence we have the following proposition.
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Proposition 3.3. Let n be a Lie algebra of type Bn. If n−3 ⊕·· ·⊕n3 is a |3|-grading of n,
then

dimn−1 = (i−1)(2n+2−2i),

dimn−2 =
1
2(i−1)(i−2)+(2n+1−2i),

dimn−3 = i−1.

3.3. The case Cn. Let n be a Lie algebra of type Cn. The highest weight root of n is
2α1 + 2α2 + · · ·+ 2αn−1 +αn, and so the |3|-gradings n−3 ⊕ ·· · ⊕ n3 of n are in one-to-
one correspondence with the subsets Σi = {αi,αn} ⊆ ∆0, where 1 ≤ i ≤ n− 1. Using the
standard gradation given in [13] we can represent the |3|-grading n−3 ⊕·· ·⊕n3 as follows:

i n i

i

n

i



n0 n1 n2 n3

n−1 n0 n1 n2

n−2 n−1 n0 n1

n−3 n−2 n−1 n0


As a consequence we have the following proposition.

Proposition 3.4. Let n be a Lie algebra of type Cn. If n−3 ⊕·· ·⊕n3 is a |3|-grading of n,
then

dimn−1 = i(n− i)+(n− i)+ 1
2(n− i)(n− i−1),

dimn−2 = i(n− i),

dimn−3 = i+ 1
2 i(i−1).

3.4. The case Dn. Let n be a Lie algebra of type Dn. The highest weight root of n is
α1 + 2α2 + 2α3 + · · ·+ 2αn−2 +αn−1 +αn, and so the |3|-gradings of n are in one-to-one
correspondence with the the following subsets of simple roots of n:

(1) Σi,1 = {α1,αi},
(2) Σi,n = {αi,αn},

(3) Σi,n−1 = {αi,αn−1},
(4) Σ1,n−1,n = {α1,αn−1,αn},

where 2 ≤ i ≤ n−2.
There exists an automorphism of the Dynkin diagram that permutes αn−1 and αn, and

thus there exists an automorphism of Dn giving an isomorphism between the gradings in-
duced by Σi,n−1 and Σi,n (see [6, Chapter 14]). Therefore, in the following proposition we
only consider the sets Σi,1 = {α1,αi}, Σi,n = {αi,αn} and Σ1,n−1,n = {α1,αn−1,αn}. Using
the standard gradation given in [13] we have:
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• For Σi,1 the |3|-grading is given by

1 i i 1

1

i

i

1



n0 n1 n2 n3 ∗

n−1 n0 n1 n2 n3

n−2 n−1 n0 n1 n2

n−3 n−2 n−1 n0 n1

∗ n−3 n−2 n−1 n0



.

• For Σi,n the |3|-grading is given by

i n i

i

n

i



n0 n1 n2 n3

n−1 n0 n1 n2

n−2 n−1 n0 n1

n−3 n−2 n−1 n0



.

• For Σ1,n−1,n the |3|-grading is given by

n−1 n n−1

n−1

n

n−1



n0 n1 n2 n3

n−1 n0 n1 n2

n−2 n−1 n0 n1

n−3 n−2 n−1 n0



.

As a consequence we have the following proposition.
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Proposition 3.5. Let n be a Lie algebra of type Dn and let n−3 ⊕·· ·⊕n3 be a |3|-grading
of n associated to the previous subsets of simple roots of n. Then

(1) For Σi,1 we have

dimn−1 = (2n−2i)(i−1)+ i−1,

dimn−2 =
1
2(i−1)(i−2)+(2n−2i),

dimn−3 = i−1.

(2) For Σi,n we have

dimn−1 =
1
2(n− i)(n− i−1)+ i(n− i),

dimn−2 = i(n− i),

dimn−3 =
1
2 i(i−1).

(3) For Σ1,n−1,n we have

dimn−1 = 3(n−2),

dimn−2 = 2+ 1
2(n−2)(n−3),

dimn−3 = n−2.

Remark 3.6. In the case of the exceptional Lie algebras, it is also possible to compute all
of these dimensions for all |3|-gradings. To do this, we use the fact that ni ∼= n−i and

ni =
⊕

htΣ(α)=i

gα (i = 1,2,3),

where the sum is over all positive roots α with htΣ(α) = i.

4. FREE NILPOTENT LIE ALGEBRAS

An important class of nilpotent Lie algebras is given by the free nilpotent Lie algebras of
step s ≥ 2 with r generators. These algebras have a very rich combinatorial structure and
they are relevant in many areas of mathematics. For a classical in-depth introduction to the
subject, see [10].

Definition 4.1. The free nilpotent Lie algebra of step s ≥ 2 with r generators is the Lie
algebra generated by a set A = {x1, . . . ,xr} where there are no relations between the xi’s
except for the Jacobi identity and the condition that all brackets of order ≥ s are zero. This
algebra is denoted by Fr,s.

Example 4.2. The free nilpotent Lie algebra F2,2 is the Heisenberg algebra of dimension 3.

Any free nilpotent Lie algebra Fr,s, with r ≥ 2 and s ≥ 2, is naturally endowed with a Lie
algebra grading

Fr,s = f−s ⊕·· ·⊕ f−1,

where f−1 is the span of A and f− j is spanned by the Lie brackets of order j. Moreover, the
dimension of each f− j is given by

dim f− j =
1
j ∑

d| j
µ(d)r j/d ,

where µ is the Möbius function. The proof of this fact can be found in [10, Chapter 4].
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In particular, for s = 3 we have

dim f−1 = r,

dim f−2 =
1
2 r(r−1),

dim f−3 =
1
3(r

3 − r).

5. |3|-GRADINGS AND FREE NILPOTENT LIE ALGEBRAS

In this section, n denotes a complex simple Lie algebra of type An, Bn, Cn or Dn.

Definition 5.1. A graded isomorphism between Fr,3 = f−3⊕ f−2⊕ f−1 and the negative part
n− = n−3 ⊕n−2 ⊕n−1 of a |3|-grading of n is a Lie algebra isomorphism

φ : f−3 ⊕ f−2 ⊕ f−1 → n−3 ⊕n−2 ⊕n−1

such that φ |f−i is a linear isomorphism between f−i and n−i for i = 1,2,3.

Theorem 5.2. Let n be a |3|-grading of a simple Lie algebra of type Bn, Cn or Dn, and let
n−3 ⊕·· ·⊕n3 be a |3|-grading of n. Then there is no graded isomorphism between Fr,3 and
n− = n−3 ⊕n−2 ⊕n−1.

Proof for the case Bn. Suppose that there exists a graded isomorphism φ : Fr,3 → n−. Then,
Proposition 3.3 implies that

r = (i−1)(2n+2−2i), (1)

r(r−1)
2

=
(i−1)(i−2)

2
+(2n+1−2i), (2)

r3 − r
3

= i−1. (3)

Combining equalities (1), (2) and (3), we obtain

r(r−1)
2

=
1
2

(
r3 − r

3
−1

)
r3 − r

3
+2n+1−2

(
r3 − r

3
+1

)
,

which implies that
−r6 +2r4 +15r3 +8r2 −24r = 36n−18.

For r ≥ 3 the function f (r) = −r6 + 2r4 + 15r3 + 8r2 − 24r is negative. For r = 2 the
function f takes the value 72, which implies that 36n = 90. This contradicts the assumption
that n is an integer.

It follows that there cannot exist graded isomorphisms for n of type Bn. □

Remark 5.3. For the Lie algebras of type Cn and Dn stated in Theorem 5.2, the arguments
for the nonexistence of graded isomorphisms are also based in simple arithmetic, although
they are computationally more involved.

A similar result for the case of Lie algebras of type An is also valid, but follows from a
different argument. To show it, let us recall the following very simple fact.

Lemma 5.4. Denote by Epq the matrix with a 1 in the position (p,q) and 0’s in all other
entries. Then

[Epq,Ers] = EpqErs −ErsEpq =


Epq if p ̸= s, q = r,
−Eqr if p = s, q ̸= r,
Epp −Eqq if p = s, q = r,
0 if p ̸= s, q ̸= r.
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And now we can state and prove a result analogous to Theorem 5.2. This completes the
nonexistence of graded isomorphisms for all classical simple Lie algebras.

Theorem 5.5. Let n= n−3 ⊕·· ·⊕n3 be a |3|-grading of a simple Lie algebra n of type An.
Then there does not exist a graded isomorphism between Fr,3 and n− = n−3 ⊕n−2 ⊕n−1.

Proof. We will first show that there are always nontrivial elements x,y ∈ n−1 such that
[x,y] = 0.

Recall that n−1 is described as follows:

n−1 =




0 0 0 0
A 0 0 0
0 B 0 0
0 0 C 0

 : A ∈ M( j−i)×i, B ∈ M(k− j)×( j−i),C ∈ M(n+1−k)×(k− j)

 .

Consider x = Epq and y= Ers, with p∈ {i+1, . . . , j}, q∈ {1, . . . , i}, r ∈ {k+1, . . . ,n+1}
and s ∈ { j+ 1, . . . ,k}. Then it is clear that p ̸= s and q ̸= r. Applying Lemma 5.4 we see
that these elements satisfy [x,y] = 0.

This obviously implies that a graded isomorphism between Fr,3 and n− cannot exist,
since [x,y] should be the image of a nontrivial element of f−2. □

6. FURTHER RESULTS

We have also been able to describe precisely the subalgebras n0 for all |3|-gradings of
a simple Lie algebra n. These algebras are known to be reductive and their classification
follows from the next result, which can be found in [3].

Theorem 6.1. Let n = n−s ⊕·· ·⊕ns be an |s|-grading of a simple Lie algebra associated
to a subset Σ of simple roots of n. The dimension of the center of n0 coincides with the
cardinality of Σ, and the Dynkin diagram of the semisimple part nss

0 of n0 is obtained by
removing all nodes corresponding to the roots in Σ and all edges connected to these nodes.

Using Theorem 3.1 and Theorem 6.1 we obtain Table 2, which shows the structure of n0
for all possible |3|-gradings of a simple Lie algebra n of type An.

TABLE 2. n0 for algebras of type An.

Σ n0

{α1,α2,α3} C3 ⊕An−3

{α1,α2,αn} C3 ⊕An−3

{αi,αi+1,αi+2}, C3 ⊕Ai−1 ⊕An−i−22 ≤ i < n−3
{αi,αi+1,αk},

C3 ⊕Ai−1 ⊕Ak−i−2 ⊕An−k
2 ≤ i ≤ n−3,
|k− (i+1)|> 1,
k ≤ n−1
{αi,αi+1,αn} C3 ⊕Ai−1 ⊕An−i−2

{αi,α j,αk},
C3 ⊕Ai−1 ⊕A j−i−1 ⊕Ak− j−1 ⊕An−k| j− i|> 1, |k− j|> 1,

k ≤ n−1
{αi,α j,αn} C3 ⊕Ai−1 ⊕A j−i−1 ⊕An− j−1
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