AN ALTERNATIVE AXIOMATIC PRESENTATION OF NELSON ALGEBRAS

JUAN MANUEL CORNEJO, ANDRÉS GALLARDO, LUIZ FERNANDO MONTEIRO,
AND IGNACIO DARÍO VIGLIZZO

Abstract

Nelson algebras were defined in 1967 by D. Brignole and A. Monteiro in terms of the language $\langle\wedge, \vee, \rightarrow, \sim, 1\rangle$. In 1962, D. Brignole solved the problem, proposed by A. Monteiro, of giving an axiomatization of Nelson algebras in terms of the connectives \mapsto, \wedge and the constant $0=\sim 1$, where the operation \longmapsto is defined by $x \mapsto y=(x \rightarrow y) \wedge$ $(\sim y \rightarrow \sim x)$. In this work we present for the first time a complete proof of this fact, and also show the dependence and independence of some of the axioms proposed by Brignole.

1. Preliminaries

Nelson algebras or \mathscr{N}-algebras were introduced by H. Rasiowa [Ras58] as an algebraic counterpart of Nelson's constructive logic with strong negation [Nel49]. Later, D. Brignole and A. Monteiro [BM67, Bri69] gave a characterization using identities, proving that Nelson algebras form a variety. This characterization was given in terms of the operations $\wedge, \vee, \rightarrow$, \sim and the constant 1.

A different implication operation can be defined by

$$
x \longmapsto y=(x \rightarrow y) \wedge(\sim y \rightarrow \sim x) .
$$

In 1962, Diana Brignole solved the problem proposed by A. Monteiro, of giving an axiomatization of Nelson algebras in terms of the connectives \mapsto, \wedge and the constant 0 . This solution was presented at the annual meeting of the Unión Matemática Argentina, and a summary (containing some typos) was published in [Bri65]; however, to the best of our knowledge, the corresponding proof has not been published.

In [SV07], Spinks and Veroff used this axiomatization to prove that the variety of Nelson algebras is term equivalent to a variety of bounded 3-potent BCK-semilattices, and in [SV08a] and [SV08b] they proved that using the operation \rightarrow Nelson algebras can be understood as residuated lattices, with the product given by the term

$$
x * y=\sim(x \rightarrow \sim y) \vee \sim(y \rightarrow \sim x)
$$

As a consequence, the corresponding logic, constructive logic with strong negation, can be seen as a substructural logic (see also [BC10]).

In this note, we give a complete proof of the axiomatization proposed by Brignole, prove the independence of some of the axioms from the rest and announce that two of the identities can be derived from the others, although we only have an automated proof of this fact.

Definition 1.1. A Nelson algebra is an algebra $\langle A, \wedge, \vee, \rightarrow, \sim, 1\rangle$ of type $(2,2,2,1,0)$ such that the following conditions are satisfied for all x, y, z in A :
(N1) $x \wedge(x \vee y)=x$,
(N2) $x \wedge(y \vee z)=(z \wedge x) \vee(y \wedge x)$,
(N3) $\sim \sim x=x$,
(N4) $\sim(x \wedge y)=\sim x \vee \sim y$,

[^0](N5) $x \wedge \sim x=(x \wedge \sim x) \wedge(y \vee \sim y)$,
(N6) $x \rightarrow x=1$,
(N7) $x \wedge(x \rightarrow y)=x \wedge(\sim x \vee y)$,
(N8) $(x \wedge y) \rightarrow z=x \rightarrow(y \rightarrow z)$.
We will denote by \mathscr{N} the variety of Nelson algebras.
The axioms in this list form an independent set, see [MM96].
By axioms (N 1) and (N2) we have that every Nelson algebra is a distributive lattice (see Sholander [Sho51]). Furthermore, if we define $0=\sim 1$, we have that 0 and 1 are the bottom and top element of A, respectively.

In a Nelson algebra we can also define the following operations that will be used in this work:

- $\ulcorner x:=x \rightarrow(\sim 1)$,
- $x \rightarrow y:=(x \rightarrow y) \wedge(\sim y \rightarrow \sim x)$.

Lemma 1.2. Let $\langle A, \wedge, \vee, \rightarrow, \sim, 1\rangle$ be a Nelson algebra. The following properties are satisfied in A :
(a) $x \rightarrow(y \wedge z)=(x \rightarrow y) \wedge(x \rightarrow z)$,
(b) $1 \rightarrow x=x$,
(c) $\sim x \leq\ulcorner x$,
(d) $(x \rightarrow x) \wedge(\sim x \rightarrow \sim x)=1$,
(e) $\sim y \leq y \rightarrow z$,
(f) $y \leq x \rightarrow y$,
(g) $(x \vee y) \rightarrow z=(x \rightarrow z) \wedge(y \rightarrow z)$,
(h) $x \rightarrow y=x \mapsto(x \mapsto y)$,
(i) $x \rightarrow(x \rightarrow y)=x \rightarrow y$.

Proof. The proofs of these items can be found in [Vig99].

The following definition is the set of equations given by Brignole in [Bri65], reordered and with some typos corrected.

Definition 1.3. A Brignole algebra is an algebra $\mathbf{A}=\left\langle A, \wedge_{\mathrm{B}}, \succ, 0\right\rangle$ of type $(2,2,0)$ such that the following equations are satisfied for all $x, y, z \in A$:
(B1) $(x \mapsto x) \longmapsto y=y$,
(B2) $x \wedge_{\mathrm{B}} \sim_{\mathrm{B}}\left(x \wedge_{\mathrm{B}} \sim_{\mathrm{B}} y\right)=x \wedge_{\mathrm{B}}(x \longmapsto y)$,
(B3) $x \mapsto\left(y \wedge_{\mathrm{B}} z\right)=(x \mapsto y) \wedge_{\mathrm{B}}(x \mapsto z)$,
(B4) $x \longmapsto y=\sim_{\mathrm{B}} y \longmapsto \sim_{\mathrm{B}} x$,
(B5) $x \mapsto(x \mapsto(y \hookrightarrow(y \hookrightarrow z)))=\left(x \wedge_{\mathrm{B}} y\right) \longmapsto\left(\left(x \wedge_{\mathrm{B}} y\right) \longmapsto z\right)$,
(B6) $\sim_{\mathrm{B}}\left(\sim_{\mathrm{B}} x \wedge_{\mathrm{B}} y\right) \longmapsto(x \longmapsto y)=x \longmapsto y$,
(B7) $x \wedge_{\mathrm{B}}\left(y \vee_{\mathrm{B}} z\right)=\left(z \wedge_{\mathrm{B}} x\right) \vee_{\mathrm{B}}\left(y \wedge_{\mathrm{B}} x\right)$,
(B8) $\left(x \wedge_{\mathrm{B}} \sim_{\mathrm{B}} x\right) \wedge_{\mathrm{B}}\left(y \vee_{\mathrm{B}} \sim_{\mathrm{B}} y\right)=x \wedge_{\mathrm{B}} \sim_{\mathrm{B}} x$,
(B9) $(x \longmapsto y) \wedge_{\mathrm{B}} y=y$,
(B10) $x \wedge_{\mathrm{B}}\left(x \vee_{\mathrm{B}} y\right)=x$,
where

- $\sim_{\mathrm{B}} x:=x \longmapsto 0$,
- $x \vee_{\mathrm{B}} y:=\left((x \longmapsto 0) \wedge_{\mathrm{B}}(y \longmapsto 0)\right) \longmapsto 0$.

We will denote by \mathscr{B} the variety of Brignole algebras.
We are going to show that \mathscr{B} and \mathscr{N} are term equivalent.

2. TERM EQUIVALENCE BETwEEN \mathscr{B} And \mathscr{N}

Let us consider a Nelson algebra $\mathbf{A}=\langle A, \wedge, \vee, \rightarrow, \sim, 1\rangle$. Over \mathbf{A} we can define the terms

- $x \mapsto y:=(x \rightarrow y) \wedge(\sim y \rightarrow \sim x)$,
- $x \wedge_{\mathrm{B}} y:=x \wedge y$,
- $0:=\sim 1$,
- $\sim_{\mathrm{B}} x:=x \longmapsto 0$,
- $x \vee_{\mathrm{B}} y:=\left((x \longmapsto 0) \wedge_{\mathrm{B}}(y \longmapsto 0)\right) \longmapsto 0$.

We are going to prove that $\left\langle A, \wedge_{\mathrm{B}}, \longmapsto, 0\right\rangle$ is a Brignole algebra. In order to see that, we need the following result:

Lemma 2.1. In a Nelson algebra \mathbf{A} the following identities hold for all $x, y, z \in A$:
(a) $\sim_{B} x=\sim x$,
(b) $x \vee_{B} y=x \vee y$,
(c) $x \wedge\left(x \vee_{B} y\right)=x, x \wedge\left(y \vee_{B} z\right)=(z \wedge x) \vee_{B}(y \wedge x),\left(x \wedge \sim_{B} x\right) \wedge\left(y \vee_{B} \sim_{B} y\right)=x \wedge \sim_{B} x$,
(d) $x \mapsto x=1$,
(e) $x=x \wedge(\sim x \rightarrow y)$,
(f) $1 \mapsto x=x$,
(g) $(x \longmapsto x) \longmapsto y=y$,
(h) $(x \mapsto y) \wedge y=y$,
(i) $x \wedge \sim(x \wedge \sim y)=x \wedge(x \mapsto y)$,
(j) $x \mapsto(y \wedge z)=(x \longmapsto y) \wedge(x \longmapsto z)$,
(k) $x \mapsto y=\sim_{B} y \longmapsto \sim_{B} x$,
(l) $x \longmapsto(x \longmapsto(y \mapsto(y \mapsto z)))=(x \wedge y) \longmapsto((x \wedge y) \mapsto z)$,
(m) $\sim(\sim x \wedge y) \longmapsto(x \longmapsto y)=x \mapsto y$.

Proof.
(a) $\sim_{\mathrm{B}} x=x \longmapsto 0=x \longmapsto(\sim 1)=(x \rightarrow(\sim 1)) \wedge(\sim \sim 1 \rightarrow \sim x) \underset{(\mathrm{N} 3)}{=}(x \rightarrow(\sim 1)) \wedge$ $(1 \rightarrow(\sim x)) \underset{1.2(\mathrm{~b})}{\overline{=}}(x \rightarrow(\sim 1)) \wedge \sim x \underset{\text { def. }}{=}\ulcorner x \wedge \sim x \underset{1.2(\mathrm{c})}{\overline{=}} \sim x$.
(b) $x \vee_{\mathrm{B}} y=((x \longmapsto 0) \wedge(y \hookrightarrow 0)) \longmapsto 0 \underset{\text { def. }}{=} \sim(\sim x \wedge \sim y) \underset{(\mathrm{N} 4)}{=} \sim \sim x \vee \sim \sim y \underset{(\mathrm{~N} 3)}{=} x \vee y$.
(c) From item (b) and the definition of \wedge_{B} we have that this result is immediate from axioms (N1), (N2) and (N5).

From the first two conditions of this item we conclude that $\left\langle A ; \wedge_{\mathrm{B}}, \vee_{\mathrm{B}}\right\rangle$ is a distributive lattice [Sho51]. Therefore, for the rest of the proof, we will use properties of distributive lattices without explicitly mentioning them.
(d) It follows immediately from Lemma 1.2 (d).
(e) It is a consequence of Lemma 1.2 (e) and (N3).
(f) $(1 \rightarrow y) \wedge(\sim y \rightarrow \sim 1) \underset{1.2(\mathrm{~b})}{=} y \wedge(\sim y \rightarrow \sim 1) \underset{(\mathrm{e})}{=} y$.
(g) $(y \longmapsto y) \longmapsto x \underset{(\mathrm{~d})}{=} \longrightarrow x \underset{(\mathrm{f})}{=} x$.
(h) $(x \mapsto y) \wedge y=((x \rightarrow y) \wedge(\sim y \rightarrow \sim x)) \wedge y=((x \rightarrow y) \wedge y) \wedge(\sim y \rightarrow \sim x) \underset{1.2(\mathrm{f})}{=} y \wedge$ $(\sim y \rightarrow \sim x) \underset{(\mathrm{e})}{=} y$.
(i) $x \wedge(x \mapsto y)=x \wedge(x \rightarrow y) \wedge(\sim y \rightarrow \sim x) \underset{(\mathrm{N} 7)}{=} x \wedge(\sim x \vee y) \wedge(\sim y \rightarrow \sim x)=$ $((x \wedge \sim x) \vee(x \wedge y)) \wedge(\sim y \rightarrow \sim x)=((x \wedge \sim x) \wedge(\sim y \rightarrow \sim x)) \vee((x \wedge y) \wedge(\sim y \rightarrow \sim x))$ $\underset{(\mathrm{e})}{=}(x \wedge \sim x) \vee((x \wedge y) \wedge(\sim y \rightarrow \sim x))=x \wedge(\sim x \vee(y \wedge(\sim y \rightarrow \sim x))) \underset{(\mathrm{e})}{=} x \wedge(\sim x \vee y)$ $\underset{(\mathrm{N} 3)}{=} x \wedge(\sim x \vee \sim \sim y) \underset{(\mathrm{N} 4)}{=} x \wedge \sim(x \wedge \sim y)$.
(j) $x \mapsto(y \wedge z)=(x \rightarrow(y \wedge z)) \wedge(\sim(y \wedge z) \rightarrow \sim x)_{1.2(\mathrm{a})}^{=}(x \rightarrow y) \wedge(x \rightarrow z) \wedge(\sim(y \wedge z) \rightarrow$ $\sim x) \underset{(\mathrm{N} 4)}{=}(x \rightarrow y) \wedge(x \rightarrow z) \wedge((\sim y \vee \sim z) \rightarrow \sim x) \underset{1.2(\mathrm{~g})}{=}(x \rightarrow y) \wedge(x \rightarrow z) \wedge(\sim y \rightarrow$ $\sim x) \wedge(\sim z \rightarrow \sim x)=((x \rightarrow y) \wedge(\sim y \rightarrow \sim x)) \wedge((x \rightarrow z) \wedge(\sim z \rightarrow \sim x))=(x \mapsto$ $y) \wedge(x \longmapsto z)$.
(k) It is an immediate consequence of the definition of \hookrightarrow and (N3).
(l) $x \longmapsto(x \longmapsto(y \longmapsto(y \longmapsto z))) \underset{1.2(\mathrm{~h})}{=} x \rightarrow(y \rightarrow z) \underset{(\mathrm{N} 8)}{=}(x \wedge y) \rightarrow z \underset{1.2(\mathrm{~h})}{=}(x \wedge y) \longmapsto((x \wedge$ $y) \longmapsto z)$.
(m) Observe that $\sim(\sim x \wedge y) \longmapsto(x \longmapsto y) \geq x \mapsto y$ follows from (h). Let us see the other inequality. From the definition of \longmapsto, we can deduce the following: $u \mapsto v \leq u \rightarrow v$.

Therefore, we have that $\sim(\sim x \wedge y) \mapsto(x \mapsto y) \leq \sim(\sim x \wedge y) \rightarrow(x \mapsto y) \underset{\text { def. }}{=}(x \vee$ $\sim y) \rightarrow((x \rightarrow y) \wedge(\sim y \rightarrow \sim x)) \underset{1.2(\mathrm{a})}{=}((x \vee \sim y) \rightarrow(x \rightarrow y)) \wedge((x \vee \sim y) \rightarrow(\sim y \rightarrow$ $\sim x)$).

Therefore,

$$
\begin{aligned}
& \sim(\sim x \wedge y) \mapsto(x \succ y) \leq((x \vee \sim y) \rightarrow(x \rightarrow y)) \wedge((x \vee \sim y) \rightarrow(\sim y \rightarrow \sim x)) \\
& \quad \text { Now, }(x \vee \sim y) \rightarrow(x \rightarrow y) \underset{1.2(\mathrm{~g})}{\overline{\mathrm{g}}}(x \rightarrow(x \rightarrow y)) \wedge(\sim y \rightarrow(x \rightarrow y)) \underset{1.2(\mathrm{i})}{\overline{=}}(x \rightarrow y) \wedge \\
& (\sim y \rightarrow(x \rightarrow y)) \leq x \rightarrow y . \text { Hence, }
\end{aligned}
$$

$$
\begin{equation*}
(x \vee \sim y) \rightarrow(x \rightarrow y) \leq x \rightarrow y . \tag{2}
\end{equation*}
$$

On the other hand, $(x \vee \sim y) \rightarrow(\sim y \rightarrow \sim x) \underset{1.2(\mathrm{~g})}{=}(x \rightarrow(\sim y \rightarrow \sim x)) \wedge(\sim y \rightarrow(\sim y \rightarrow$ $\sim x)) \underset{1.2(\mathrm{i})}{=}(x \rightarrow(\sim y \rightarrow \sim x)) \wedge(\sim y \rightarrow \sim x) \underset{1.2(\mathrm{f})}{=} \sim y \rightarrow \sim x$. Then,

$$
\begin{equation*}
(x \vee \sim y) \rightarrow(\sim y \rightarrow \sim x)=\sim y \rightarrow \sim x \tag{3}
\end{equation*}
$$

From (1), (2) and (3) we conclude that

$$
\sim(\sim x \wedge y) \mapsto(x \mapsto y) \leq(x \rightarrow y) \wedge(\sim y \rightarrow \sim x)=x \mapsto y .
$$

Theorem 2.2. Let $\mathbf{A}=\langle A, \wedge, \vee, \rightarrow, \sim, 1\rangle$ be a Nelson algebra. Then $\left\langle A, \wedge_{B}, \mapsto, 0\right\rangle$ is a Brignole algebra.

Proof. From items (g), (h), (i), (j), (k), (l) and (m) of Lemma 2.1 it follows that A satisfies (B1), (B9), (B2), (B3), (B4), (B5) and (B6), respectively. The axioms (B10), (B7) and (B8) are verified considering Lemma 2.1 (c).

Now, let us consider an algebra $\mathbf{A}=\left\langle A, \wedge_{\mathrm{B}}, \longmapsto, 0\right\rangle$ of type $(2,2,0)$ that satisfies equations (B1) to (B8). We define over \mathbf{A} the following:

- $x \wedge y:=x \wedge_{B} y$,
- $x \vee y:=\left((x \longmapsto 0) \wedge_{\mathrm{B}}(y \longmapsto 0)\right) \longmapsto 0$,
- $x \rightarrow y:=x \longmapsto(x \mapsto y)$,
- $\sim x:=x \mapsto 0$,
- $1:=0 \longmapsto 0$.

Our goal now is to prove that $\langle A, \wedge, \vee, \rightarrow, \sim, 1\rangle$ is a Nelson algebra. Since we are going to prove later that the equations (B9) and (B10) can be proved from the other ones, we separate here the identities that can be proved without using those two equations.

Lemma 2.3. In an algebra $\left\langle A, \wedge_{B}, \multimap, 0\right\rangle$ of type $(2,2,0)$ satisfying equations (B1) to (B8), the following conditions are satisfied for all $x, y, z \in A$:
(a) $\sim 1=0$,
(b) $1=1 \mapsto 1$,
(c) $1 \mapsto x=x$,
(d) $\sim \sim x=x$,
(e) $\sim(x \vee y)=\sim x \wedge \sim y$,
(f) $\sim(x \wedge y)=\sim x \vee \sim y$,
(g) $x \wedge(x \rightarrow y)=x \wedge(\sim x \vee y)$,
(h) $(x \wedge y) \rightarrow z=x \rightarrow(y \rightarrow z)$,
(i) $x \mapsto x=1$, and in particular, $x \mapsto x=y \mapsto y$.

Proof. (a) $\sim 1=\sim(0 \hookrightarrow 0) \underset{\text { def. }}{=}(0 \hookrightarrow 0) \longmapsto 0 \underset{(\text { B } 1)}{=} 0$.
(b) $1=0 \hookrightarrow 0 \underset{\text { (B4) }}{=} \sim 0 \hookrightarrow \sim 0=(0 \hookrightarrow 0) \hookrightarrow(0 \hookrightarrow 0) \underset{\text { def. }}{=} 1 \hookrightarrow 1$.
(c) $1 \hookrightarrow x \underset{\text { (b) }}{=}(1 \hookrightarrow 1) \mapsto x \underset{\text { (B1) }}{=} x$.
(d) $x \underset{(\mathrm{~B} 1)}{=}(y \hookrightarrow y) \longmapsto x \underset{(\mathrm{~B} 4)}{\overline{=}}(x \hookrightarrow 0) \longmapsto((y \longmapsto y) \longmapsto 0) \underset{(\mathrm{B} 1)}{\overline{=}}(x \hookrightarrow 0) \longmapsto 0 \underset{\text { def. } \sim}{\overline{=}} \sim \sim x$.
(e) $\sim(x \vee y)=\sim(((x \hookrightarrow 0) \wedge(y \hookrightarrow 0)) \longmapsto 0)=\sim(\sim(\sim x \wedge \sim y)) \underset{\text { (d) }}{=} \sim x \wedge \sim y$.
(f) It follows from items (d) and (e).
(g) $x \wedge(x \rightarrow y) \underset{\text { def. }}{=} x \wedge(x \hookrightarrow(x \hookrightarrow y)) \underset{(\text { B2 })}{=} x \wedge \sim(x \wedge \sim(x \hookrightarrow y)) \underset{\text { (d) and (f) }}{=} x \wedge(\sim x \vee(x \hookrightarrow$ $y))=(x \wedge \sim x) \vee(x \wedge(x \rightarrow y)) \underset{\text { (B2) }}{=}(x \wedge \sim x) \vee(x \wedge \sim(x \wedge \sim y))=x \wedge(\sim x \vee \sim(x \wedge$ $\sim y) \underset{\text { (f) }}{=} x \wedge(\sim x \vee(\sim x \vee \sim \sim y))=x \wedge(\sim x \vee \sim x \vee y)=x \wedge(\sim x \vee y)$.
(h) By (B5), $(x \wedge y) \rightarrow z=(x \wedge y) \rightharpoondown((x \wedge y) \mapsto z)=x \mapsto(x \mapsto(y \hookrightarrow(y \hookrightarrow z)))=x \rightarrow$ $(y \rightarrow z)$.
(i) $x \hookrightarrow x \underset{\text { (d) }}{=}((x \hookrightarrow x) \hookrightarrow 0) \hookrightarrow 0) \underset{(\mathrm{B1})}{=} 0 \hookrightarrow 0 \underset{\text { def. }}{=} 1$.

Lemma 2.4. In a Brignole algebra \mathbf{A} the following conditions are satisfied for all $x, y, z \in A$:
(a) $x \wedge(x \vee y)=x, x \wedge(y \vee z)=(z \wedge x) \vee(y \wedge x)$ and $(x \wedge \sim x) \wedge(y \vee \sim y)=x \wedge \sim x$,
(b) $x \vee 1=1$,
(c) $x \mapsto 1=1$,
(d) $x \rightarrow x=1$.

Proof. (a) It is an immediate consequence of (B10), (B7) and (B8).
From now on, we will use the fact that the reduct $\langle A, \wedge, \vee\rangle$ is a distributive lattice [Sho51], with all its inherent properties.
(b) $x \vee 1=x \vee \sim 0 \underset{\text { def. }}{=} \sim(\sim x \wedge \sim \sim 0) \underset{\text { Lemma } 2.3(\mathrm{~d})}{=} \sim(\sim x \wedge 0) \underset{\text { def. }}{=}((x \longmapsto 0) \wedge 0) \longmapsto 0 \underset{(\text { B9 })}{=}$ $0 \hookrightarrow 0=1$.

By this result, we can conclude that 1 is the top element of A.
(c) $1 \wedge(x \hookrightarrow 1) \underset{(\mathrm{B} 9)}{\underset{(}{y}} 1$, then $1 \leq x \mapsto 1$. By (b), the equality follows.
(d) $x \rightarrow x=x \mapsto(x \mapsto x) \underset{\text { Lemma } 2.3(\mathrm{i})}{=} x \mapsto \underset{\text { (c) }}{=} 1$.

Theorem 2.5. Let $\left\langle A, \wedge_{B}, \longmapsto, 0\right\rangle$ be a Brignole algebra. Then $\mathbf{A}=\langle A, \wedge, \vee, \rightarrow, \sim, 1\rangle$ is a Nelson algebra.

Proof. By Lemma 2.4 (a), A satisfies (N1), (N2) and (N5). The items (d), (f), (g) and (h) from Lemma 2.3 prove the validity of (N3), (N4), (N7) and (N8), respectively, while Lemma 2.4 (d) proves (N6).

Theorem 2.6. The varieties of Nelson and Brignole algebras are term equivalent.
Proof. If a Nelson algebra $\langle A, \wedge, \vee, \rightarrow, \sim, 1\rangle$ is obtained from a Brignole algebra $\langle A, \wedge, \multimap$, $0\rangle$ as in Theorem 2.2, and if we define $x \Rightarrow y:=(x \rightarrow y) \wedge(\sim y \rightarrow \sim x)$, we obtain $x \Rightarrow y=$ $x \longmapsto y:$

$$
\begin{aligned}
& x \Rightarrow y=(x \rightarrow y) \wedge(\sim y \rightarrow \sim x) \underset{\text { def. }}{=}(x \longmapsto(x \longmapsto y)) \wedge(\sim y \longmapsto(\sim y \hookrightarrow \sim x)) \\
& \underset{(\mathrm{B} 4)}{=}(x \longmapsto(x \longmapsto y)) \wedge(\sim y \longmapsto(x \longmapsto y)) \underset{(\mathrm{B} 4)}{=}(\sim(x \longmapsto y) \longmapsto \sim x) \wedge(\sim(x \longmapsto y) \longmapsto y) \\
& \underset{(\mathrm{B} 3)}{=} \sim(x \longmapsto y) \longmapsto(\sim x \wedge y) \underset{(\mathrm{B} 4)}{=} \sim(\sim x \wedge y) \longmapsto(x \longmapsto y) \underset{(\mathrm{B} 6)}{=} x \mapsto y .
\end{aligned}
$$

If a Brignole algebra $\left\langle A, \wedge_{\mathrm{B}}, \longrightarrow, 0\right\rangle$ is obtained from a Nelson algebra $\langle A, \wedge, \vee, \rightarrow, \sim, 1\rangle$ as in Theorem 2.5, when we define $x \rightsquigarrow y:=x \longmapsto(x \longmapsto y)$, we obtain that $x \rightsquigarrow y=x \rightarrow y$. This is a consequence of Lemma 1.2 (h).

3. Independence of Brignole axioms

A natural question is which axioms of Definition 1.3 are independent. We have the following result:

Theorem 3.1. In the variety \mathscr{B} the axioms (B1), (B2), (B4), (B6) and (B7) are independent.

Proof. The examples in this section have been found by the programs Prover9 and Mace4 [McC10]. For each example, we indicate the elements for which the equation fails, while the rest of them have been checked to hold.

3.1. Independence of (B1).

\rightarrow	0	a	1
0	1	1	1
a	a	a	1
1	0	a	1

\wedge_{B}	0	a	1
0	0	0	0
a	0	a	a
1	0	a	1

Axiom (B1) fails considering $x=a$ and $y=0$. Indeed: $(a \longmapsto a) \longmapsto 0=a \longmapsto 0=a \neq 0$.

3.2. Independence of (B2).

\bullet	0	a	b	1
0	1	1	1	1
a	b	1	1	1
b	a	1	1	1
1	0	a	b	1

\wedge_{B}	0	a	b	1
0	0	0	0	0
a	0	a	a	a
b	0	a	b	b
1	0	a	b	1

Axiom (B2) fails considering $x=a$ and $y=b$.
Indeed: $a \wedge_{\mathrm{B}}\left(\left(a \wedge_{\mathrm{B}}(b \longmapsto 0)\right) \longmapsto 0\right)=a \wedge_{\mathrm{B}}\left(\left(a \wedge_{\mathrm{B}} 0\right) \longmapsto 0\right)=a \wedge_{\mathrm{B}}(0 \longmapsto 0)=a \wedge_{\mathrm{B}} 0=0$, and $a \wedge_{\mathrm{B}}(a \longmapsto b)=a \wedge_{\mathrm{B}} 1=a$.

3.3. Independence of (B4).

\mapsto	0	a	b	c	1
0	1	1	1	1	1
a	c	1	1	1	1
b	b	1	1	1	1
c	a	a	b	1	1
1	0	a	b	c	1

\wedge_{B}	0	a	b	c	1
0	0	0	0	0	0
a	0	a	a	a	a
b	0	a	b	b	b
c	0	a	b	c	c
1	0	a	b	c	1

Axiom (B4) fails considering $x=c$ and $y=b$.
Indeed: $c \longmapsto b=b$, and $(b \longmapsto 0) \longmapsto(c \longmapsto 0)=b \longmapsto a=1$.

3.4. Independence of (B5).

\rightarrow	0	a	b	c	d	e	1
0	1	1	1	1	1	1	1
a	e	1	e	1	1	1	1
b	d	d	1	1	1	1	1
c	c	d	e	1	1	1	1
d	b	c	b	e	1	e	1
e	a	a	c	d	d	1	1
1	0	a	b	c	d	e	1

\wedge_{B}	0	a	b	c	d	e	1
0	0	0	0	0	0	0	0
a	0	a	0	a	a	a	a
b	0	0	b	b	b	b	b
c	0	a	b	c	c	c	c
d	0	a	b	c	d	c	d
e	0	a	b	c	c	e	e
1	0	a	b	c	d	e	1

Axiom (B5) fails considering $x=e, y=d$ and $z=0$.
Indeed: $e \mapsto(e \longmapsto(d \longmapsto(d \longmapsto 0)))=e \longmapsto(e \longmapsto(d \longmapsto b))=e \mapsto(e \mapsto b)=e \mapsto c=d$, and $\left(e \wedge_{\mathrm{B}} d\right) \longmapsto\left(\left(e \wedge_{\mathrm{B}} d\right) \longmapsto 0\right)=c \mapsto(c \longmapsto 0)=c \mapsto c=1$.

3.5. Independence of (B7).

\rightarrow	0	a	b	1
0	1	1	1	1
a	a	1	1	1
b	b	1	1	1
1	0	a	b	1

$$
\begin{array}{r|llll}
\wedge_{\mathrm{B}} & 0 & a & b & 1 \\
\hline 0 & 0 & 0 & 0 & 0 \\
a & 0 & a & a & a \\
b & 0 & b & b & b \\
1 & 0 & a & b & 1
\end{array}
$$

Axiom (B7) fails considering $x=b, y=0$ and $z=a$.
Indeed: $b \wedge_{\mathrm{B}}\left(0 \vee_{\mathrm{B}} a\right)=b \wedge_{\mathrm{B}}\left(\left((0 \longmapsto 0) \wedge_{\mathrm{B}}(a \longmapsto 0)\right) \longmapsto 0\right)=b \wedge_{\mathrm{B}}\left(\left(1 \wedge_{\mathrm{B}} a\right) \longmapsto 0\right)=$ $b \wedge_{\mathrm{B}}(a \longmapsto 0)=b \wedge_{\mathrm{B}} a=b$, and $\left(a \wedge_{\mathrm{B}} b\right) \vee_{\mathrm{B}}\left(0 \wedge_{\mathrm{B}} b\right)=a \vee_{\mathrm{B}} 0=\left((a \longmapsto 0) \wedge_{\mathrm{B}}(0 \mapsto 0)\right) \mapsto$ $0=\left(a \wedge_{\mathrm{B}} 1\right) \longmapsto 0=a \longmapsto 0=a$.

4. DEPENDENT AXIOMS

In this section we will prove that axioms (B9) and (B10) can be derived from the other axioms for Brignole algebras.

Lemma 4.1. Let \mathbf{A} be an algebra $\left\langle A, \wedge_{B}, \longmapsto, 0\right\rangle$ satisfying the axioms (B 1) to (B 8). The following properties are satisfied for all $x, y, z \in A$:
(a) $x=(x \longmapsto 0) \longmapsto\left(x \wedge_{B} 0\right)$,
(b) $0 \wedge_{B} 0=0$,
(c) $x \wedge_{B} y=y \wedge_{B} x$,
(d) $x \wedge_{B} x=x$,
(e) $0 \wedge_{B} 1=0$,
(f) $x \wedge_{B} 0=0$,
(g) $x \vee_{B} x=x$,
(h) $x \vee_{B} y=y \vee_{B} x$,
(i) $x \wedge_{B}\left(y \vee_{B} z\right)=\left(x \wedge_{B} y\right) \vee_{B}\left(x \wedge_{B} z\right)$,
(j) $x \vee_{B} 1=1$.

Proof.
(a) $x \underset{\text { Lemma 2.3(d) }}{=}(x \longmapsto 0) \longmapsto 0=\sim x \longmapsto 0 \underset{(\mathrm{~B} 6)}{=} \sim\left(\sim \sim x \wedge_{\mathrm{B}} 0\right) \longmapsto(\sim x \longmapsto 0) \underset{\text { Lemma 2.3(d) and def. } \sim}{\overline{=}}$ $\sim\left(x \wedge_{\mathrm{B}} 0\right) \longmapsto \sim \sim x \underset{(\mathrm{~B} 4)}{=} \sim x \longmapsto\left(x \wedge_{\mathrm{B}} 0\right)=(x \longmapsto 0) \longmapsto\left(x \wedge_{\mathrm{B}} 0\right)$.
(b) Taking x to be 0 in (a), we have that $0=(0 \hookrightarrow 0) \hookrightarrow\left(0 \wedge_{\mathrm{B}} 0\right) \underset{\text { (B1) }}{=} 0 \wedge_{\mathrm{B}} 0$.
(c) $x \wedge_{\mathrm{B}} y \underset{\text { Lemma 2.3(d) }}{=}\left(\left(x \wedge_{\mathrm{B}} y\right) \longmapsto 0\right) \rightharpoondown 0 \underset{\text { (b) }}{=}\left(\left(x \wedge_{\mathrm{B}} y\right) \mapsto\left(0 \wedge_{\mathrm{B}} 0\right)\right) \hookrightarrow 0 \underset{(\mathrm{~B} 3)}{=}$
$\left(\left(\left(x \wedge_{\mathrm{B}} y\right) \multimap 0\right) \wedge_{\mathrm{B}}\left(\left(x \wedge_{\mathrm{B}} y\right) \rightharpoondown 0\right)\right) \longmapsto 0 \underset{\text { def. }}{=}\left(x \wedge_{\mathrm{B}} y\right) \vee_{\mathrm{B}}\left(x \wedge_{\mathrm{B}} y\right) \underset{(\mathrm{B} 7)}{=} y \wedge_{\mathrm{B}}\left(x \vee_{\mathrm{B}} x\right) \underset{\text { def. }}{=}$
$y \wedge_{\mathrm{B}}\left(\left((x \hookrightarrow 0) \wedge_{\mathrm{B}}(x \hookrightarrow 0)\right) \hookrightarrow 0\right) \underset{(\mathrm{BB})}{=} y \wedge_{\mathrm{B}}\left(\left(x \hookrightarrow\left(0 \wedge_{\mathrm{B}} 0\right)\right) \hookrightarrow 0\right) \underset{\text { (b) }}{=} y \wedge_{\mathrm{B}}((x \hookrightarrow 0) \hookrightarrow$ $0) \underset{\text { Lemma } 2.3(\mathrm{~d})}{=} y \wedge_{\mathrm{B}} x$.
(d) $x \wedge_{\mathrm{B}} x \underset{\text { Lemma } 2.3(\mathrm{~d})}{=} \sim \sim x \wedge_{\mathrm{B}} \sim \sim x \underset{\text { def. }}{=}((x \mapsto 0) \longmapsto 0) \wedge_{\mathrm{B}}((x \longmapsto 0) \longmapsto 0) \underset{(\mathrm{B} 3)}{\overline{=}}(x \mapsto 0) \longmapsto$ $\left(0 \wedge_{\mathrm{B}} 0\right) \underset{\text { (b) }}{=}(x \mapsto 0) \longmapsto 0 \underset{\text { def. }}{=} \sim \sim x \underset{\text { Lemma } 2.3 \text { (d) }}{=} x$.
(e) We notice that $x \underset{\text { (a) }}{=}(x \hookrightarrow 0) \longmapsto\left(x \wedge_{\mathrm{B}} 0\right) \underset{\text { (c), def. }}{\overline{=}} \sim x \hookrightarrow\left(0 \wedge_{\mathrm{B}} x\right)$.

Replacing x with $\sim y$, we obtain the equivalent

$$
\begin{equation*}
\sim y=y \mapsto\left(0 \wedge_{\mathrm{B}} \sim y\right) . \tag{1}
\end{equation*}
$$

Using (B2) and the definition of \sim, we have that $0 \wedge_{B}(0 \hookrightarrow x)=0 \wedge_{B}\left(\left(0 \wedge_{B}(x \mapsto\right.\right.$ $0)$) $\hookrightarrow 0$). Then

$$
\begin{equation*}
\left(0 \wedge_{\mathrm{B}}(x \hookrightarrow 0)\right) \hookrightarrow\left(0 \wedge_{\mathrm{B}}(0 \hookrightarrow x)\right)=\left(0 \wedge_{\mathrm{B}}(x \hookrightarrow 0)\right) \hookrightarrow\left(0 \wedge_{\mathrm{B}}\left(0 \wedge_{\mathrm{B}}(x \mapsto 0)\right) \hookrightarrow 0\right) . \tag{2}
\end{equation*}
$$

The right side of (2) is of the same form as the right side of (1) taking y to be $0 \wedge_{B}(x \mapsto$ 0), so we can rewrite (2) as

$$
\begin{equation*}
\left(0 \wedge_{\mathrm{B}}(x \hookrightarrow 0)\right) \hookrightarrow\left(0 \wedge_{\mathrm{B}}(0 \hookrightarrow x)\right)=\left(0 \wedge_{\mathrm{B}}(x \hookrightarrow 0)\right) \hookrightarrow 0 . \tag{3}
\end{equation*}
$$

Replacing x by 0 in (3), we obtain
$\left(0 \wedge_{B}(0 \hookrightarrow 0)\right) \mapsto 0=\left(0 \wedge_{B}(0 \hookrightarrow 0)\right) \longmapsto\left(0 \wedge_{B}(0 \hookrightarrow 0)\right) \underset{\text { Lemma 2.3(i) }}{=} y \longmapsto y \underset{\text { Lemma 2.3(i) }}{=} 0 \hookrightarrow 0$,
that is,

$$
\begin{equation*}
\left(0 \wedge_{\mathrm{B}}(0 \longmapsto 0)\right) \longmapsto 0=0 \longmapsto 0 \tag{4}
\end{equation*}
$$

By Lemma 2.3 (d), (4) is equivalent to

$$
0 \wedge_{B}(0 \hookrightarrow 0)=0
$$

Therefore, $0 \wedge_{B} 1=0$.
(f) See the Appendix.
(g) $x \vee_{\mathrm{B}} x \underset{\text { def. }}{=}\left((x \hookrightarrow 0) \wedge_{\mathrm{B}}(x \hookrightarrow 0)\right) \hookrightarrow 0 \underset{\text { (d) }}{=}(x \hookrightarrow 0) \hookrightarrow 0 \underset{\text { Lemma 2.3(d) }}{=} x$.
(h) $x \vee_{\mathrm{B}} y \underset{\text { def. }}{=}\left((x \hookrightarrow 0) \wedge_{\mathrm{B}}(y \hookrightarrow 0)\right) \hookrightarrow 0 \underset{\text { (c) }}{=}\left((y \hookrightarrow 0) \wedge_{\mathrm{B}}(x \hookrightarrow 0)\right) \longmapsto 0 \underset{\text { def. }}{=} y \vee_{\mathrm{B}} x$.
(i) $x \wedge_{\mathrm{B}}\left(y \vee_{\mathrm{B}} z\right) \underset{\text { (B7) }}{=}\left(z \wedge_{\mathrm{B}} x\right) \vee_{\mathrm{B}}\left(y \wedge_{\mathrm{B}} x\right) \underset{\text { (c) }}{=}\left(x \wedge_{\mathrm{B}} z\right) \vee_{\mathrm{B}}\left(x \wedge_{\mathrm{B}} y\right) \underset{\text { (h) }}{=}\left(x \wedge_{\mathrm{B}} y\right) \vee_{\mathrm{B}}\left(x \wedge_{\mathrm{B}} z\right)$.
(j) $x \vee_{\mathrm{B}} 1 \underset{\text { Lemma } 2.3(\mathrm{~d})}{=} \sim \sim x \vee_{\mathrm{B}} \sim \sim 1 \underset{\text { Lemma } 2.3(\mathrm{f})}{=} \sim\left(\sim x \wedge_{\mathrm{B}} \sim 1\right) \underset{\text { Lemma } 2.3 \text { (a) }}{=} \sim\left(\sim x \wedge_{\mathrm{B}} 0\right) \underset{(\mathrm{f})}{=}$ $\sim 0 \underset{\text { def. }}{=} 1$.

We are now in a position to show the following:
Theorem 4.2. An algebra $\left\langle A, \wedge_{B}, \rightarrow, 0\right\rangle$ of type $(2,2,0)$ is a Brignole algebra if and only if it satisfies the following equations for every $x, y, z \in A$:
(B1) $(x \mapsto x) \mapsto y=y$,
(B2) $x \wedge_{B} \sim_{B}\left(x \wedge_{B} \sim_{B} y\right)=x \wedge_{B}(x \hookrightarrow y)$,
(B3) $x \mapsto\left(y \wedge_{B} z\right)=(x \mapsto y) \wedge_{B}(x \mapsto z)$,
(B4) $x \mapsto y=\sim_{B} y \mapsto \sim_{B} x$,
(B5) $x \hookrightarrow(x \hookrightarrow(y \hookrightarrow(y \hookrightarrow z)))=\left(x \wedge_{B} y\right) \hookrightarrow\left(\left(x \wedge_{B} y\right) \mapsto z\right)$,
(B6) $\sim_{B}\left(\sim_{B} x \wedge_{B} y\right) \mapsto(x \mapsto y)=x \mapsto y$,
(B7) $x \wedge_{B}\left(y \vee_{B} z\right)=\left(z \wedge_{B} x\right) \vee_{B}\left(y \wedge_{B} x\right)$,
(B8) $\left(x \wedge_{B} \sim_{B} x\right) \wedge_{B}\left(y \vee_{B} \sim_{B} y\right)=x \wedge_{B} \sim_{B} x$,
where $\sim_{B} x:=x \hookrightarrow 0$ and $x \vee_{B} y:=\left((x \hookrightarrow 0) \wedge_{B}(y \hookrightarrow 0)\right) \longmapsto 0$.
Proof. One of the implications is immediate. For the other one, let us prove (B9) first.

$$
\begin{aligned}
& (x \longmapsto y) \wedge_{\mathrm{B}} y \underset{(\mathrm{~B} 4)}{=}((y \longmapsto 0) \longmapsto(x \longmapsto 0)) \wedge_{\mathrm{B}} y \\
& \quad \underset{\text { Lemma 2.3 (d) }}{=}((y \longmapsto 0) \longmapsto(x \longmapsto 0)) \wedge_{\mathrm{B}}(y \longmapsto 0) \longmapsto 0 \underset{(\mathrm{~B} 3)}{=}(y \longmapsto 0) \longmapsto\left((x \mapsto 0) \wedge_{\mathrm{B}} 0\right) \\
& \quad=\underset{\text { Lemma } 4.1 \text { (f) }}{=}(y \longmapsto 0) \longmapsto 0 \underset{\text { Lemma 2.3 (d) }}{=} y .
\end{aligned}
$$

Hence, we have (B9).
Using Lemma 2.3 (f) and Lemma 4.1 (i), (h), and (c), we have

$$
\sim\left(x \wedge_{\mathrm{B}} \sim y\right) \wedge_{\mathrm{B}} \sim\left(z \wedge_{\mathrm{B}} \sim y\right)=\sim\left(\sim y \wedge_{\mathrm{B}}\left(z \vee_{\mathrm{B}} x\right)\right) .
$$

Taking $z=1$ we obtain

$$
\begin{equation*}
\sim\left(x \wedge_{\mathrm{B}} \sim y\right) \wedge_{\mathrm{B}} \sim\left(1 \wedge_{\mathrm{B}} \sim y\right)=\sim\left(\sim y \wedge_{\mathrm{B}}\left(1 \vee_{\mathrm{B}} x\right)\right) . \tag{1}
\end{equation*}
$$

Notice that

$$
z \underset{(\mathrm{~B} 9)}{ } z \wedge_{\mathrm{B}}(z \hookrightarrow z) \underset{\text { Lemma 2.3(i) }}{=} z \wedge_{\mathrm{B}} 1 \underset{\text { Lemma 4.1(c) }}{=} 1 \wedge_{\mathrm{B}} z,
$$

that is,

$$
\begin{equation*}
z=1 \wedge_{\mathrm{B}} z \tag{2}
\end{equation*}
$$

Taking $z=\sim y$ in (2), and replacing that in (1), we obtain

$$
\begin{gathered}
\sim\left(x \wedge_{\mathrm{B}} \sim y\right) \wedge_{\mathrm{B}} \sim \sim y=\sim\left(\sim y \wedge_{\mathrm{B}}\left(1 \vee_{\mathrm{B}} x\right)\right){ }_{\text {Lemma } 4.1(\mathrm{~h}),(\mathrm{j})} \sim\left(\sim y \wedge_{\mathrm{B}} 1\right) \\
={ }_{\text {Lemma } 4.1(\mathrm{c})} \sim \sim \mathcal{V}_{\text {Lemma } 2.3(\mathrm{~d})}^{=} y ;
\end{gathered}
$$

by Lemma 2.3 (d) we have that

$$
\sim\left(x \wedge_{\mathrm{B}} \sim y\right) \wedge_{\mathrm{B}} y=y,
$$

and by Lemma 4.1 (i), Lemma 2.3 (d) and Lemma 4.1 (c) it follows that

$$
\begin{equation*}
y=y \wedge_{\mathrm{B}}\left(\sim x \vee_{\mathrm{B}} y\right) . \tag{3}
\end{equation*}
$$

If we change y and x in (3) by x and $\sim y$ respectively (and use Lemma 4.1 (h)), we obtain (B10).

AcKNOWLEDGMENT

The authors would like to thank the referee for their valuable suggestions that helped improve this work.

References

[Bri65] D. Brignole, Axiomatización de un N-reticulado, Rev. Un. Mat. Argentina 21 (1963), no. 3, 147-148. https://inmabb.criba.edu.ar/revuma/pdf/v21n3/p143-160.pdf.
[Bri69] D. Brignole, Equational characterization of Nelson algebra, Notre Dame J. Formal Logic 10 (1969), 285-297. MR 0245432.
[BM67] D. Brignole and A. Monteiro, Caractérisation des algèbres de Nelson par des égalités. I, II, Proc. Japan Acad. 43 (1967), 279-283; 284-285. MR 0218208.
[BC10] M. Busaniche and R. Cignoli, Constructive logic with strong negation as a substructural logic, J. Logic Comput. 20 (2010), no. 4, 761-793. MR 2670235.
[McC10] W. McCune, Prover9 and Mace4, 2005-2010. https://www.cs.unm.edu/~mccune/prover9/
[MM96] A. Monteiro and L. Monteiro, Axiomes indépendants pour les algèbres de Nelson, de Łukasiewicz trivalentes, de De Morgan et de Kleene, in Unpublished papers, I, 13 pp, Notas Lógica Mat. 40, INMABB, Univ. Nac. del Sur, Bahía Blanca, 1996. MR 1420006. Also published in [Mon07], pp. 2149-2160.
[Mon07] A. Monteiro, The Works of António A. Monteiro, Eduardo L. Ortiz and Alfredo Pereira Gomes (editors), Fundação Calouste Gulbenkian, Lisbon and The Humboldt Press, London, 2007.
[Nel49] D. Nelson, Constructible falsity, J. Symbolic Logic 14 (1949), 16-26. MR 0029843.
[Ras58] H. Rasiowa, \mathscr{N}-lattices and constructive logic with strong negation, Fund. Math. 46 (1958), 61-80. MR 0098682.
[Sho51] M. Sholander, Postulates for distributive lattices, Canad. J. Math. 3 (1951), 28-30. MR 0038942.
[SV07] M. Spinks and R. Veroff, Characterisations of Nelson algebras, Rev. Un. Mat. Argentina 48 (2007), no. 1, 27-39. MR 2389213.
[SV08a] M. Spinks and R. Veroff, Constructive logic with strong negation is a substructural logic. I, Studia Logica 88 (2008), no. 3, 325-348. MR 2399143.
[SV08b] M. Spinks and R. Veroff, Constructive logic with strong negation is a substructural logic. II, Studia Logica 89 (2008), no. 3, 401-425. MR 2438551.
[Vig99] I. Viglizzo, Álgebras de Nelson, Tesis de Magíster en Matemática, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, 1999.

APPENDIX

The following proof has been adapted from the output produced by the program Prover9 [McC10]. For simplicity we are going to replace \wedge_{B} with \wedge.

20. $x \mapsto 0=x \mapsto(0 \wedge(x \rightarrow 0))$
by Lemma (4.1), (e), item (1)
21. $x \wedge((x \wedge 0) \multimap 0)=x \wedge(x \hookrightarrow(y \mapsto y))$
by (3) and (5)
22. $(x \hookrightarrow y) \wedge((x \hookrightarrow(y \wedge 0)) \hookrightarrow 0)=(x \hookrightarrow y) \wedge((x \hookrightarrow y) \longmapsto x)$ by (7) and (5)
23. $(x \hookrightarrow 0) \mapsto((y \hookrightarrow y) \mapsto 0)=x$
by (9) and (3)
24. $(x \hookrightarrow 0) \mapsto 0=x$
by (3) and (23)
25. $0 \hookrightarrow(x \hookrightarrow 0)=x \hookrightarrow(y \hookrightarrow y)$ by (3) and (9) by (9)
26. $x \wedge(x \hookrightarrow y)=x \wedge((y \hookrightarrow 0) \mapsto(x \hookrightarrow 0))$
by (9) and (7)
27. $(x \hookrightarrow y) \wedge((y \hookrightarrow 0) \mapsto z)=(y \hookrightarrow 0) \rightarrow((x \hookrightarrow 0) \wedge z)$ by (9) and (7)
28. $((x \hookrightarrow 0) \mapsto y) \wedge(z \multimap x)=(x \hookrightarrow 0) \rightharpoondown(y \wedge(z \multimap 0))$
29. $(x \mapsto(y \wedge z)) \mapsto(((x \mapsto y) \wedge(x \mapsto z)) \rightharpoondown u)=(x \mapsto y) \mapsto((x \mapsto y) \mapsto((x \mapsto z) \mapsto$ $((x \hookrightarrow z) \longmapsto u))) \quad$ by (7) and (10)
30. $(x \mapsto(y \wedge z)) \mapsto((x \mapsto(y \wedge z)) \mapsto u)=(x \mapsto y) \mapsto((x \mapsto y) \mapsto((x \mapsto z) \mapsto((x \mapsto$ $z) \mapsto u)$)
by (7) and (29)
31. $(x \wedge y) \multimap(x \hookrightarrow(x \hookrightarrow(y \hookrightarrow(y \hookrightarrow z))))=x \hookrightarrow(x \mapsto(y \hookrightarrow(y \hookrightarrow((x \wedge y) \mapsto z))))$
by (10)
32. $((x \wedge y) \wedge(x \wedge y)) \mapsto(((x \wedge y) \wedge(x \wedge y)) \mapsto z)=(x \wedge y) \mapsto(x \mapsto(x \mapsto(y \mapsto(y \mapsto((x \wedge$ $y) \rightharpoondown z))$))
by (10)
33. $(x \wedge y) \longmapsto(((x \wedge y) \wedge(x \wedge y)) \longmapsto z)=(x \wedge y) \longmapsto(x \mapsto(x \mapsto(y \mapsto(y \mapsto((x \wedge y) \mapsto z)))))$ by (18) and (32)
34. $(x \wedge y) \mapsto((x \wedge y) \mapsto z)=(x \wedge y) \longmapsto(x \hookrightarrow(x \hookrightarrow(y \hookrightarrow(y \hookrightarrow((x \wedge y) \mapsto z))))$ by (18) and (33)
35. $x \hookrightarrow(x \hookrightarrow(y \hookrightarrow(y \hookrightarrow z)))=(x \wedge y) \multimap(x \hookrightarrow(x \mapsto(y \mapsto(y \hookrightarrow((x \wedge y) \mapsto z)))))$ by (10) and (34)
36. $x \hookrightarrow(x \hookrightarrow(y \hookrightarrow(y \hookrightarrow z)))=x \hookrightarrow(x \hookrightarrow(y \hookrightarrow(y \hookrightarrow((x \wedge y) \hookrightarrow((x \wedge y) \hookrightarrow z)))))$
by (31) and (35)
37. $x \hookrightarrow(x \mapsto(y \mapsto(y \mapsto z)))=x \hookrightarrow(x \hookrightarrow(y \hookrightarrow(y \hookrightarrow(x \mapsto(x \mapsto(y \mapsto(y \hookrightarrow z))))))$
by (10) and (36)
38. $((x \hookrightarrow y) \longmapsto 0) \longmapsto((((x \hookrightarrow 0) \wedge y) \longmapsto 0) \longmapsto 0)=x \longmapsto y$ by (13) and (9)
39. $((x \hookrightarrow y) \longmapsto 0) \longmapsto((x \hookrightarrow 0) \wedge y)=x \hookrightarrow y$ by (24) and (38)
40. $x \vee_{\text {B }}((y \hookrightarrow 0) \wedge(z \multimap 0))=((((z \wedge(x \hookrightarrow 0)) \longmapsto 0) \wedge((y \wedge(x \hookrightarrow 0)) \longmapsto 0)) \hookrightarrow 0) \longmapsto 0$ by (15) and (1)
41. $((x \hookrightarrow 0) \wedge(((y \hookrightarrow 0) \wedge(z \hookrightarrow 0)) \longmapsto 0)) \longmapsto 0=((((z \wedge(x \hookrightarrow 0)) \longmapsto 0) \wedge((y \wedge(x \hookrightarrow 0)) \hookrightarrow$ $0)) ~ \rightharpoondown 0) ~ \rightharpoondown 0$ by (1) and (40)
42. $((x \hookrightarrow 0) \wedge(((y \hookrightarrow 0) \wedge(z \hookrightarrow 0)) \longmapsto 0)) \longmapsto 0=((z \wedge(x \hookrightarrow 0)) \mapsto 0) \wedge((y \wedge(x \hookrightarrow 0)) \longmapsto 0)$ by (24) and (41)
43. $((x \wedge(y \hookrightarrow 0)) \mapsto 0) \wedge(((z \hookrightarrow 0) \wedge(x \hookrightarrow 0)) \longmapsto 0)=(((x \wedge(x \hookrightarrow y)) \mapsto 0) \wedge((z \wedge((x \wedge$ $(y \hookrightarrow 0)) \rightharpoondown 0)) \rightharpoondown 0)) \hookrightarrow 0$ by (5) and (15)
44. $(x \wedge(((y \hookrightarrow 0) \wedge(z \hookrightarrow 0)) \mapsto 0)) \wedge((((z \wedge x) \mapsto 0) \wedge((y \wedge x) \mapsto 0)) \mapsto u)=(((z \wedge x) \mapsto$ $0) \wedge((y \wedge x) \multimap 0)) \mapsto(0 \wedge u)$
45. $(x \mapsto x) \wedge(y \hookrightarrow z)=y \hookrightarrow(y \wedge z)$ by (15) and (7)
46. $(x \mapsto y) \wedge(z \hookrightarrow z)=x \hookrightarrow(y \wedge x)$ by (16) and (7)
47. $(x \wedge y) \mapsto(z \hookrightarrow z)=x \mapsto(x \mapsto(y \mapsto(y \mapsto(x \wedge y))))$ by (16) and (7)
48. $0 \hookrightarrow((x \wedge y) \mapsto 0)=x \hookrightarrow(x \mapsto(y \hookrightarrow(y \mapsto(x \wedge y))))$
by (16) and (10)
49. $(((x \hookrightarrow 0) \wedge x) \mapsto 0) \mapsto(y \mapsto y)=x \mapsto x$
by (25) and (47)
50. $((x \wedge(x \hookrightarrow 0)) \mapsto 0) \mapsto(y \mapsto y)=x \hookrightarrow x$
by (16) and (13)
51. $0 \hookrightarrow(((x \wedge(x \hookrightarrow 0)) \multimap 0) \mapsto 0)=x \hookrightarrow x$
by (17) and (49)
52. $0 \hookrightarrow(x \wedge(x \hookrightarrow 0))=x \mapsto x$
by (25) and (50)
.
by (24) and (51)
53. $x \wedge(((y \longmapsto 0) \wedge x) \longmapsto 0)=x \wedge(x \longmapsto y)$
54. $(x \longmapsto 0) \wedge((x \mapsto 0) \mapsto 0)=(x \mapsto 0) \wedge((x \mapsto 0) \longmapsto x)$
55. $(x \longmapsto 0) \wedge x=(x \longmapsto 0) \wedge((x \longmapsto 0) \longmapsto x)$
56. $x \wedge(x \longmapsto 0)=(x \mapsto 0) \wedge((x \longmapsto 0) \longmapsto x)$
57. $x \longmapsto((x \wedge x) \longmapsto y)=x \mapsto(x \longmapsto(x \longmapsto(x \mapsto y)))$
58. $x \mapsto(x \mapsto y)=x \mapsto(x \longmapsto(x \mapsto(x \mapsto y)))$
59. $((x \longmapsto 0) \longmapsto 0) \longmapsto(x \longmapsto(x \longmapsto 0))=x \longmapsto(x \longmapsto 0)$
60. $x \longmapsto(x \longmapsto(x \longmapsto 0))=x \longmapsto(x \longmapsto 0)$
61. $0 \wedge(0 \longmapsto 0)=0 \wedge(0 \longmapsto(x \longmapsto x))$
62. $x \wedge((x \wedge y) \longmapsto 0)=x \wedge(x \longmapsto(y \longmapsto 0))$
63. $x \wedge((x \longmapsto 0) \longmapsto y)=(x \longmapsto 0) \longmapsto(0 \wedge y)$
64. $((x \longmapsto 0) \longmapsto y) \wedge x=(x \longmapsto 0) \longmapsto(y \wedge 0)$
65. $x \wedge((x \longmapsto 0) \longmapsto y)=(x \longmapsto 0) \longmapsto(y \wedge 0)$
66. $x \longmapsto(y \longmapsto 0)=y \longmapsto(x \longmapsto 0)$
67. $(x \longmapsto 0) \longmapsto y=(y \longmapsto 0) \longmapsto x$
68. $((((x \longmapsto 0) \longmapsto 0) \wedge 0) \longmapsto 0) \longmapsto x=(x \longmapsto 0) \longmapsto 0$
69. $((x \wedge 0) \longmapsto 0) \longmapsto x=(x \longmapsto 0) \longmapsto 0$
70. $(x \longmapsto 0) \longmapsto(x \wedge 0)=(x \longmapsto 0) \longmapsto 0$
71. $(x \longmapsto 0) \longmapsto(x \wedge 0)=x$
72. $(x \longmapsto 0) \longmapsto(0 \wedge x)=x$
73. $((x \mapsto 0) \longmapsto x) \wedge((x \longmapsto 0) \longmapsto 0)=x$
74. $((x \hookrightarrow 0) \longmapsto x) \wedge x=x$
75. $x \wedge((x \succ 0) \longmapsto x)=x$
76. $((x \mapsto 0) \mapsto 0) \wedge(((x \mapsto 0) \longmapsto(0 \wedge 0)) \longmapsto 0)=((x \longmapsto 0) \longmapsto 0) \wedge(x \rightleftharpoons(x \longmapsto 0))$ by and (22)
77. $x \wedge(((x \longmapsto 0) \longmapsto(0 \wedge 0)) \longmapsto 0)=((x \longmapsto 0) \longmapsto 0) \wedge(x \longmapsto(x \longmapsto 0)) \quad$ by (24) and (76)
78. $x \wedge(((x \hookrightarrow 0) \longmapsto 0) \longmapsto 0)=((x \hookrightarrow 0) \longmapsto 0) \wedge(x \longmapsto(x \longmapsto 0))$
79. $x \wedge(x \mapsto 0)=((x \mapsto 0) \longmapsto 0) \wedge(x \mapsto(x \mapsto 0))$
80. $x \wedge(x \mapsto 0)=x \wedge(x \mapsto(x \mapsto 0))$
81. $(x \mapsto 0) \wedge(x \mapsto y)=x \mapsto((0 \wedge(x \mapsto 0)) \wedge y)$
82. $x \mapsto(0 \wedge y)=x \longmapsto((0 \wedge(x \longmapsto 0)) \wedge y)$
83. $(x \longmapsto x) \wedge(0 \longmapsto y)=0 \longmapsto((x \wedge(x \longmapsto 0)) \wedge y)$
84. $(x \longmapsto x) \wedge y=y \wedge(z \longmapsto z)$
85. $(x \longmapsto x) \wedge y=(y \longmapsto 0) \longmapsto((y \longmapsto 0) \wedge 0)$
86. $(x \mapsto x) \wedge y=(y \hookrightarrow 0) \longmapsto(0 \wedge(y \hookrightarrow 0))$
87. $(x \longmapsto x) \wedge(y \hookrightarrow(z \longmapsto z))=0 \longmapsto(0 \wedge(y \longmapsto 0))$ by (18) and (77) by (24) and (78) by (24) and (79) by (20) and (7) by (7) and (81) by (52) and (7) by (16) and (17) by (24) and (45) by (17) and (85)
by (25) and (45)
88. $((x \hookrightarrow(y \longmapsto y)) \longmapsto 0) \longmapsto(0 \wedge((x \longmapsto(y \longmapsto y)) \longmapsto 0))=0 \longmapsto(0 \wedge(x \longmapsto 0))$ by (86) and (87)
89. $(x \longmapsto x) \wedge((y \longmapsto y) \longmapsto z)=(y \longmapsto y) \longmapsto(z \wedge(u \longmapsto u)) \quad$ by (84) and (45)
90. $(x \mapsto x) \wedge z=(y \mapsto y) \longmapsto(z \wedge(u \mapsto u)) \quad$ by (3) and (89)
91. $(z \longmapsto 0) \longmapsto(0 \wedge(z \longmapsto 0))=(y \longmapsto y) \longmapsto(z \wedge(u \longmapsto u)) \quad$ by (86) and (90)
92. $(z \longmapsto 0) \longmapsto(0 \wedge(z \longmapsto 0))=z \wedge(u \longmapsto u) \quad$ by (3) and (91)
93. $x \wedge(y \longmapsto y)=(x \longmapsto 0) \longmapsto(0 \wedge(x \longmapsto 0))$ by (92)
94. $(x \mapsto x) \wedge(y \mapsto(z \mapsto z))=y \mapsto((u \mapsto u) \wedge y)$
by (84) and (45)
95. $((y \mapsto(z \longmapsto z)) \longmapsto 0) \longmapsto(0 \wedge((y \mapsto(z \longmapsto z)) \longmapsto 0))=y \mapsto((u \mapsto u) \wedge y)$ by (86) and (94)
96. $0 \longmapsto(0 \wedge(y \hookrightarrow 0))=y \mapsto((u \mapsto u) \wedge y) \quad$ by (88) and (95)
97. $0 \longmapsto(0 \wedge(y \longmapsto 0))=y \longmapsto((y \hookrightarrow 0) \longmapsto(0 \wedge(y \longmapsto 0)))$
98. $0 \longmapsto((x \wedge(x \longmapsto 0)) \wedge y)=((0 \longmapsto y) \longmapsto 0) \longmapsto(0 \wedge((0 \longmapsto y) \longmapsto 0))$
by (86) and (96)
by (86) and (83)
99. $(x \wedge y) \wedge(x \longmapsto(x \longmapsto(y \longmapsto(y \longmapsto 0))))=(x \wedge y) \wedge((x \wedge y) \longmapsto 0)$
100. $(x \longmapsto(x \longmapsto(y \longmapsto(y \longmapsto 0)))) \wedge(x \wedge y)=(x \wedge y) \wedge((x \wedge y) \longmapsto 0)$
101. $(x \longmapsto x) \wedge(((y \longmapsto 0) \wedge(x \mapsto x)) \longmapsto 0)=(x \mapsto x) \wedge y$
102. $(x \longmapsto x) \wedge((y \hookrightarrow(0 \wedge y)) \longmapsto 0)=(x \hookrightarrow x) \wedge y$
103. $(((y \longmapsto(0 \wedge y)) \longmapsto 0) \longmapsto 0) \longmapsto(0 \wedge(((y \longmapsto(0 \wedge y)) \longmapsto 0) \longmapsto 0))=(x \longmapsto x) \wedge y$ by (86) and (102)
104. $((0 \hookrightarrow 0) \longmapsto(y \hookrightarrow(0 \wedge y))) \longmapsto(0 \wedge(((y \mapsto(0 \wedge y)) \mapsto 0) \mapsto 0))=(x \mapsto x) \wedge y$ by (67) and (103)
105. $(y \longmapsto(0 \wedge y)) \longmapsto(0 \wedge(((y \longmapsto(0 \wedge y)) \longmapsto 0) \longmapsto 0))=(x \longmapsto x) \wedge y \quad$ by (3) and (104)
106. $(y \mapsto(0 \wedge y)) \longmapsto(0 \wedge((0 \longmapsto 0) \longmapsto(y \longmapsto(0 \wedge y))))=(x \longmapsto x) \wedge y \quad$ by (67) and (105)
107. $(y \mapsto(0 \wedge y)) \longmapsto(0 \wedge(y \longmapsto(0 \wedge y)))=(x \longmapsto x) \wedge y$
108. $(x \mapsto(0 \wedge x)) \longmapsto(0 \wedge(x \longmapsto(0 \wedge x)))=(x \longmapsto 0) \longmapsto(0 \wedge(x \longmapsto 0))$
109. $x \wedge((y \wedge x) \longmapsto 0)=x \wedge(x \mapsto(y \mapsto 0))$
110. $x \longmapsto(x \longmapsto(0 \longmapsto(x \longmapsto 0)))=x \longmapsto(x \longmapsto x)$
111. $(x \longmapsto(y \wedge z)) \longmapsto(u \mapsto u)=(x \mapsto y) \longmapsto((x \mapsto y) \longmapsto((x \mapsto z) \mapsto((x \longmapsto z) \longmapsto(x \mapsto$ $(y \wedge z)))))$
by (16) and (30)
112. $0 \mapsto((x \longmapsto(y \wedge z)) \longmapsto 0)=(x \mapsto y) \longmapsto((x \mapsto y) \longmapsto((x \mapsto z) \longmapsto((x \mapsto z) \longmapsto(x \longmapsto$ $(y \wedge z)))))$
by (25) and (111)
113. $(x \longmapsto(y \wedge z)) \longmapsto((x \longmapsto y) \longmapsto((x \longmapsto y) \longmapsto((x \longmapsto z) \longmapsto((x \longmapsto z) \longmapsto u))))=(x \longmapsto y) \longmapsto$ $((x \longmapsto y) \longmapsto((x \longmapsto z) \longmapsto((x \longmapsto z) \longmapsto((x \longmapsto(y \wedge z)) \longmapsto u)))) \quad$ by (30) and (30)
114. $(0 \wedge x) \wedge((0 \wedge x) \wedge(((0 \wedge x) \longmapsto 0) \longmapsto x))=0 \wedge x$
115. $(0 \wedge x) \wedge((0 \wedge x) \wedge((x \longmapsto 0) \longmapsto(0 \wedge x)))=0 \wedge x$
116. $(0 \wedge x) \wedge((0 \wedge x) \wedge x)=0 \wedge x$
116. $(0 \wedge x) \wedge((0 \wedge x) \wedge x)=0 \wedge x \quad$ by (72) and (115)
117. $(0 \wedge x) \wedge(x \wedge(x \wedge 0))=0 \wedge x \quad$ by (17) and (116)
118. $x \wedge((x \hookrightarrow 0) \longmapsto(0 \hookrightarrow(y \hookrightarrow y)))=(x \longmapsto 0) \longmapsto(0 \wedge(0 \hookrightarrow 0)) \quad$ by (61) and (63)
119. $(0 \wedge x) \longmapsto(((0 \wedge x) \wedge(x \wedge(x \wedge 0))) \succ y)=(0 \wedge x) \mapsto((0 \wedge x) \mapsto((x \wedge(x \wedge 0)) \longmapsto((x \wedge$ $(x \wedge 0)) \longmapsto y)))$
by (117) and (10)
120. $(0 \wedge x) \longmapsto((0 \wedge x) \mapsto y)=(0 \wedge x) \longmapsto((0 \wedge x) \longmapsto((x \wedge(x \wedge 0)) \longmapsto((x \wedge(x \wedge 0)) \mapsto y)))$
by (117) and (119)
121. $0 \longmapsto(0 \longmapsto(x \longmapsto(x \longmapsto y)))=(0 \wedge x) \longmapsto((0 \wedge x) \longmapsto((x \wedge(x \wedge 0)) \longmapsto((x \wedge(x \wedge 0)) \longmapsto y)))$
by (10) and (120)
122. $0 \hookrightarrow(0 \longmapsto(x \longmapsto(x \longmapsto y)))=(0 \wedge x) \longmapsto((0 \wedge x) \longmapsto(x \longmapsto(x \longmapsto((x \wedge 0) \longmapsto((x \wedge 0) \longmapsto$ $y))$))
by (10) and (121)
 $y))$) $)$) $)$
by (10) and (122)
124. $0 \longmapsto(0 \longmapsto(x \longmapsto(x \longmapsto y)))=(0 \wedge x) \longmapsto((0 \wedge x) \longmapsto(x \longmapsto(x \longmapsto(0 \longmapsto(0 \mapsto y)))))$
by (58) and (123)
125. $0 \longmapsto(0 \longmapsto(x \longmapsto(x \longmapsto y)))=0 \longmapsto(0 \longmapsto(x \longmapsto(x \longmapsto(x \longmapsto(x \longmapsto(0 \longmapsto(0 \longmapsto y))))))$
by (10) and (124)
126. $0 \longmapsto(0 \longmapsto(x \longmapsto(x \longmapsto y)))=0 \longmapsto(0 \longmapsto(x \longmapsto(x \longmapsto(0 \longmapsto(0 \longmapsto y))))) \quad$ by (58) and (125)
127. $(0 \wedge x) \longmapsto((0 \wedge((0 \wedge x) \longmapsto 0)) \wedge x)=y \longmapsto y$
by (16) and (82)
128. $(0 \wedge x) \longmapsto((0 \wedge(0 \longmapsto(x \longmapsto 0))) \wedge x)=y \longmapsto y \quad$ by (62) and (127)
129. $(0 \wedge x) \longmapsto(x \wedge(0 \wedge(0 \longmapsto(x \longmapsto 0))))=y \longmapsto y$
by (17) and (128)
130. $x \wedge((x \longmapsto 0) \longmapsto(0 \longmapsto(y \longmapsto y)))=(x \longmapsto 0) \longmapsto 0$
131. $x \wedge((x \mapsto 0) \longmapsto(0 \longmapsto(y \mapsto y)))=x$
132. $0 \wedge(0 \longmapsto(x \longmapsto x))=0$
133. $((x \longmapsto 0) \longmapsto 0) \wedge(0 \longmapsto x)=(x \longmapsto 0) \longmapsto 0$
134. $x \wedge(0 \longmapsto x)=(x \longmapsto 0) \longmapsto 0$
135. $x \wedge(0 \longmapsto x)=x$
136. $((x \longmapsto(0 \longmapsto(x \longmapsto 0))) \longmapsto 0) \longmapsto(x \longmapsto 0)=x \longmapsto(0 \longmapsto(x \mapsto 0))$
137. $x \longmapsto(((x \longmapsto(0 \longmapsto(x \longmapsto 0))) \longmapsto 0) \longmapsto 0)=x \longmapsto(0 \longmapsto(x \longmapsto 0))$
138. $x \longmapsto((0 \longmapsto 0) \longmapsto(x \longmapsto(0 \longmapsto(x \longmapsto 0))))=x \longmapsto(0 \longmapsto(x \longmapsto 0))$
139. $x \longmapsto(x \longmapsto(0 \longmapsto(x \longmapsto 0)))=x \longmapsto(0 \longmapsto(x \longmapsto 0))$
140. $x \mapsto(x \longmapsto x)=x \mapsto(0 \mapsto(x \mapsto 0))$
141. $(0 \longmapsto(0 \longmapsto(0 \longmapsto x))) \wedge(0 \longmapsto(0 \longmapsto x))=0 \longmapsto(0 \mapsto(0 \mapsto x))$
142. $(0 \longmapsto(0 \longmapsto x)) \wedge(0 \longmapsto(0 \longmapsto(0 \longmapsto x)))=0 \longmapsto(0 \longmapsto(0 \longmapsto x))$
143. $0 \longmapsto(0 \longmapsto x)=0 \longmapsto(0 \longmapsto(0 \longmapsto x))$
144. $x \wedge(((0 \longmapsto(y \longmapsto y)) \longmapsto 0) \longmapsto((x \longmapsto 0) \longmapsto 0))=x$
145. $x \wedge(((0 \longmapsto(y \mapsto y)) \mapsto 0) \longmapsto x)=x$
146. $((x \longmapsto x) \longmapsto 0) \longmapsto(x \longmapsto 0)=x \longmapsto(0 \longmapsto(x \longmapsto 0))$
147. $0 \longmapsto(x \longmapsto 0)=x \mapsto(0 \longmapsto(x \mapsto 0))$
148. $(x \longmapsto 0) \longmapsto(0 \longmapsto((x \longmapsto 0) \longmapsto 0))=(x \longmapsto 0) \longmapsto(x \longmapsto x)$
149. $(x \mapsto 0) \longmapsto(0 \mapsto x)=(x \mapsto 0) \longmapsto(x \mapsto x)$
150. $(x \longmapsto 0) \longmapsto(0 \longmapsto x)=0 \longmapsto((x \longmapsto 0) \longmapsto 0)$
151. $(x \longmapsto 0) \longmapsto(0 \hookrightarrow x)=0 \longmapsto x$
152. $(x \wedge y) \mapsto((x \wedge y) \mapsto((x \wedge y) \longmapsto(x \wedge y)))=x \longmapsto(x \longmapsto(y \hookrightarrow(y \longmapsto(0 \longmapsto((x \wedge y) \longmapsto 0)))))$
by (140) and (10)
153. $(x \wedge y) \longmapsto(0 \longmapsto((x \wedge y) \longmapsto 0))=x \longmapsto(x \longmapsto(y \longmapsto(y \longmapsto(0 \longmapsto((x \wedge y) \longmapsto 0)))))$
by (25) and (152)
154. $(x \wedge y) \longmapsto(x \longmapsto(x \longmapsto(y \longmapsto(y \longmapsto(x \wedge y)))))=x \longmapsto(x \longmapsto(y \longmapsto(y \longmapsto(0 \longmapsto((x \wedge y) \longmapsto$ $0)$))))
by (48) and (153)
155. $x \longmapsto(x \longmapsto(y \longmapsto(y \longmapsto((x \wedge y) \longmapsto(x \wedge y)))))=x \longmapsto(x \longmapsto(y \longmapsto(y \longmapsto(0 \longmapsto((x \wedge y) \longmapsto$ $0)$)))
by (31) and (154)
156. $x \longmapsto(x \longmapsto(y \longmapsto(0 \longmapsto(y \longmapsto 0))))=x \longmapsto(x \longmapsto(y \longmapsto(y \longmapsto(0 \longmapsto((x \wedge y) \longmapsto 0)))))$
by (25) and (155)
157. $x \mapsto(x \longmapsto(0 \longmapsto(y \longmapsto 0)))=x \longmapsto(x \longmapsto(y \longmapsto(y \longmapsto(0 \longmapsto((x \wedge y) \longmapsto 0))))) \quad$ by (147) and (156)
158. $x \longmapsto(x \longmapsto(0 \longmapsto(y \longmapsto 0)))=x \longmapsto(x \longmapsto(y \longmapsto(y \longmapsto(x \longmapsto(x \longmapsto(y \longmapsto(y \mapsto(x \wedge y))))))))$ by (48) and (157)
159. $x \longmapsto(x \longmapsto(0 \longmapsto(y \longmapsto 0)))=x \longmapsto(x \longmapsto(y \hookrightarrow(y \longmapsto(x \wedge y)))) \quad$ by (37) and (158)
160. $(x \longmapsto(y \wedge z)) \longmapsto((x \longmapsto(y \wedge z)) \longmapsto((x \longmapsto(y \wedge z)) \longmapsto(x \longmapsto(y \wedge z))))=(x \longmapsto y) \longmapsto((x \longmapsto$ $y) \longmapsto((x \hookrightarrow z) \longmapsto((x \longmapsto z) \longmapsto(0 \longmapsto((x \longmapsto(y \wedge z)) \longmapsto 0))))) \quad$ by (140) and (30)
161. $(x \longmapsto(y \wedge z)) \longmapsto(0 \longmapsto((x \longmapsto(y \wedge z)) \longmapsto 0))=(x \longmapsto y) \longmapsto((x \longmapsto y) \longmapsto((x \longmapsto z) \longmapsto$ $((x \longmapsto z) \longmapsto(0 \longmapsto((x \longmapsto(y \wedge z)) \longmapsto 0))))) \quad$ by (25) and (160)
162. $(x \longmapsto(y \wedge z)) \longmapsto((x \mapsto y) \longmapsto((x \mapsto y) \longmapsto((x \mapsto z) \longmapsto((x \mapsto z) \longmapsto(x \mapsto(y \wedge z))))))=$ $(x \mapsto y) \mapsto((x \mapsto y) \longmapsto((x \mapsto z) \mapsto((x \mapsto z) \mapsto(0 \longmapsto((x \mapsto(y \wedge z)) \longmapsto 0))))) \quad$ by (112) and (161)
163. $(x \longmapsto y) \longmapsto((x \longmapsto y) \longmapsto((x \longmapsto z) \longmapsto((x \longmapsto z) \longmapsto((x \longmapsto(y \wedge z)) \longmapsto(x \longmapsto(y \wedge z))))))=$ $(x \longmapsto y) \longmapsto((x \longmapsto y) \longmapsto((x \longmapsto z) \longmapsto((x \longmapsto z) \longmapsto(0 \longmapsto((x \longmapsto(y \wedge z)) \longmapsto 0))))) \quad$ by (113) and (162)
164. $(x \longmapsto y) \longmapsto((x \longmapsto y) \longmapsto((x \longmapsto z) \longmapsto(0 \longmapsto((x \longmapsto z) \longmapsto 0))))=(x \longmapsto y) \longmapsto((x \longmapsto y) \longmapsto$ $((x \mapsto z) \mapsto((x \mapsto z) \mapsto(0 \mapsto((x \mapsto(y \wedge z)) \longmapsto 0))))) \quad$ by (25) and (163)
165. $(x \longmapsto y) \longmapsto((x \longmapsto y) \longmapsto(0 \longmapsto((x \longmapsto z) \longmapsto 0)))=(x \longmapsto y) \longmapsto((x \longmapsto y) \longmapsto((x \longmapsto z) \longmapsto$ $((x \longmapsto z) \mapsto(0 \longmapsto((x \longmapsto(y \wedge z)) \longmapsto 0))))) \quad$ by (147) and (164)
166. $(x \longmapsto y) \mapsto((x \longmapsto y) \mapsto(0 \longmapsto((x \longmapsto z) \longmapsto 0)))=(x \longmapsto y) \mapsto((x \longmapsto y) \longmapsto((x \mapsto z) \mapsto$ $((x \longmapsto z) \longmapsto((x \mapsto y) \mapsto((x \longmapsto y) \mapsto((x \longmapsto z) \mapsto((x \longmapsto z) \longmapsto(x \mapsto(y \wedge z)))))))))$
by (112) and (165)
167. $(x \longmapsto y) \longmapsto((x \longmapsto y) \longmapsto(0 \longmapsto((x \longmapsto z) \longmapsto 0)))=(x \longmapsto y) \longmapsto((x \longmapsto y) \longmapsto((x \longmapsto z) \longmapsto$ $((x \longmapsto z) \longmapsto(x \longmapsto(y \wedge z))))) \quad$ by (37) and (166)
168. $0 \mapsto((x \wedge y) \longmapsto 0)=x \longmapsto(x \longmapsto(0 \longmapsto(y \longmapsto 0))) \quad$ by (159) and (48)
169. $0 \longmapsto((x \hookrightarrow(y \wedge z)) \longmapsto 0)=(x \longmapsto y) \longmapsto((x \longmapsto y) \longmapsto(0 \longmapsto((x \longmapsto z) \longmapsto 0))) \quad$ by (167) and (112)
170. $(0 \longmapsto x) \wedge(((0 \longmapsto x) \longmapsto 0) \longmapsto y)=((0 \longmapsto x) \longmapsto 0) \longmapsto(((x \longmapsto 0) \longmapsto 0) \wedge y) \quad$ by (151) and (27)
171. $(0 \longmapsto x) \wedge(((0 \longmapsto x) \longmapsto 0) \longmapsto y)=((0 \longmapsto x) \longmapsto 0) \longmapsto(x \wedge y) \quad$ by (24) and (170)
172. $(0 \longmapsto(0 \longmapsto x)) \wedge(0 \longmapsto y)=0 \longmapsto((0 \longmapsto(0 \longmapsto x)) \wedge y) \quad$ by (143) and (7)
173. $0 \succ((0 \longmapsto x) \wedge y)=0 \longmapsto((0 \longmapsto(0 \longmapsto x)) \wedge y) \quad$ by (7) and (172)
174. $(x \wedge 0) \wedge((0 \longmapsto(y \longmapsto y)) \wedge(((0 \longmapsto(y \longmapsto y)) \longmapsto 0) \longmapsto x))=x \wedge 0 \quad$ by (65) and (145)
175. $(x \wedge 0) \wedge(((0 \longmapsto(y \mapsto y)) \longmapsto 0) \longmapsto((y \mapsto y) \wedge x))=x \wedge 0 \quad$ by (171) and (174)
176. $(x \wedge 0) \wedge(((0 \longmapsto(y \longmapsto y)) \longmapsto 0) \longmapsto((x \longmapsto 0) \longmapsto(0 \wedge(x \mapsto 0))))=x \wedge 0 \quad$ by (86) and (175)
177. $((0 \wedge(0 \hookrightarrow 0)) \longmapsto 0) \wedge((x \wedge((0 \longmapsto 0) \longmapsto 0)) \longmapsto 0)=(((0 \hookrightarrow 0) \longmapsto 0) \wedge(((x \longmapsto 0) \wedge$ $((0 \longmapsto 0) \longmapsto 0)) \longmapsto 0)) \longmapsto 0 \quad$ by (56) and (42)
178. $(0 \longmapsto 0) \wedge((x \wedge((0 \longmapsto 0) \longmapsto 0)) \longmapsto 0)=(((0 \longmapsto 0) \longmapsto 0) \wedge(((x \longmapsto 0) \wedge((0 \longmapsto 0) \longmapsto$ $0)) \longmapsto 0)) \longmapsto 0$
by (135) and (177)
179. $(0 \longmapsto 0) \wedge((x \wedge 0) \longmapsto 0)=(((0 \longmapsto 0) \longmapsto 0) \wedge(((x \longmapsto 0) \wedge((0 \longmapsto 0) \longmapsto 0)) \longmapsto 0)) \succ 0$
by (3) and (178)
180. $(((x \wedge 0) \longmapsto 0) \longmapsto 0) \longmapsto(0 \wedge(((x \wedge 0) \longmapsto 0) \longmapsto 0))=(((0 \longmapsto 0) \longmapsto 0) \wedge(((x \longmapsto 0) \wedge((0 \longmapsto$ $0) \longmapsto 0)) \longmapsto 0)) \longmapsto 0$
by (86) and (179)
181. $((0 \hookrightarrow 0) \longmapsto(x \wedge 0)) \longmapsto(0 \wedge(((x \wedge 0) \longmapsto 0) \longmapsto 0))=(((0 \longmapsto 0) \longmapsto 0) \wedge(((x \longmapsto 0) \wedge((0 \longmapsto$ $0) \longmapsto 0)) \longmapsto 0)) \longmapsto 0 \quad$ by (67) and (180)
182. $(x \wedge 0) \longmapsto(0 \wedge(((x \wedge 0) \longmapsto 0) \longmapsto 0))=(((0 \longmapsto 0) \longmapsto 0) \wedge(((x \succ 0) \wedge((0 \longmapsto 0) \longmapsto 0)) \longmapsto$ 0)) $\longmapsto 0$
by (3) and (181)
183. $(x \wedge 0) \longmapsto(0 \wedge((0 \longmapsto 0) \longmapsto(x \wedge 0)))=(((0 \longmapsto 0) \longmapsto 0) \wedge(((x \longmapsto 0) \wedge((0 \longmapsto 0) \longmapsto 0)) \longmapsto$ $0)) \longmapsto 0$
by (67) and (182)
184. $(x \wedge 0) \longmapsto(0 \wedge(x \wedge 0))=(((0 \longmapsto 0) \longmapsto 0) \wedge(((x \succ 0) \wedge((0 \longmapsto 0) \longmapsto 0)) \longmapsto 0)) \longmapsto 0$
by (3) and (183)
185. $(x \wedge 0) \longmapsto(0 \wedge(x \wedge 0))=(0 \wedge(((x \longmapsto 0) \wedge((0 \longmapsto 0) \longmapsto 0)) \longmapsto 0)) \longmapsto 0$ by (3) and (184)
186. $(x \wedge 0) \longmapsto(0 \wedge(x \wedge 0))=(0 \wedge(((x \mapsto 0) \wedge 0) \mapsto 0)) \longmapsto 0 \quad$ by (3) and (185)
187. $(x \wedge 0) \longmapsto(0 \wedge(x \wedge 0))=(0 \wedge((0 \wedge(x \mapsto 0)) \longmapsto 0)) \longmapsto 0 \quad$ by (17) and (186)
188. $(x \wedge 0) \longmapsto(0 \wedge(x \wedge 0))=(0 \wedge(0 \longmapsto((x \hookrightarrow 0) \longmapsto 0))) \longmapsto 0 \quad$ by (62) and (187)
189. $(x \wedge 0) \longmapsto(0 \wedge(x \wedge 0))=(0 \wedge(0 \longmapsto x)) \longmapsto 0 \quad$ by (24) and (188)
190. $(0 \wedge x) \longmapsto(x \wedge 0)=y \longmapsto y$
by (16) and (17)
191. $(0 \wedge x) \longmapsto(y \hookrightarrow y)=0 \longmapsto(0 \longmapsto(x \longmapsto(x \longmapsto(x \wedge 0)))) \quad$ by (190) and (10)
192. $0 \hookrightarrow((0 \wedge x) \longmapsto 0)=0 \longmapsto(0 \longmapsto(x \longmapsto(x \longmapsto(x \wedge 0)))) \quad$ by (25) and (191)
193. $0 \hookrightarrow(0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow 0)))=0 \longmapsto(0 \longmapsto(x \longmapsto(x \longmapsto(x \wedge 0)))) \quad$ by (168) and (192)
194. $0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow 0))=0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow(x \hookrightarrow(x \wedge 0))))$
195. $(0 \wedge x) \wedge(((x \wedge 0) \longrightarrow 0) \mapsto((0 \wedge x) \hookrightarrow 0))=(0 \wedge x) \wedge(y \hookrightarrow y)$
196. $((x \hookrightarrow x) \hookrightarrow 0) \longmapsto(((0 \wedge y) \hookrightarrow 0) \wedge(y \wedge 0))=(0 \wedge y) \longmapsto(y \wedge 0)$
197. $0 \hookrightarrow(((0 \wedge x) \longmapsto 0) \wedge(x \wedge 0))=(0 \wedge x) \longmapsto(x \wedge 0)$
198. $(0 \wedge x) \mapsto((0 \wedge x) \mapsto((0 \wedge x) \mapsto(y \mapsto y)))=(0 \wedge x) \mapsto((0 \wedge x) \mapsto(x \wedge 0)) \quad$ by (190) and (58)
199. $(0 \wedge x) \hookrightarrow((0 \wedge x) \hookrightarrow(0 \hookrightarrow((0 \wedge x) \mapsto 0)))=(0 \wedge x) \mapsto((0 \wedge x) \mapsto(x \wedge 0)) \quad$ by (25) and (198)
200. $(0 \wedge x) \mapsto((0 \wedge x) \mapsto(0 \mapsto(0 \mapsto(0 \mapsto(x \mapsto 0)))))=(0 \wedge x) \mapsto((0 \wedge x) \mapsto(x \wedge 0))$
by (168) and (199)
201. $(0 \wedge x) \hookrightarrow((0 \wedge x) \hookrightarrow(0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow 0))))=(0 \wedge x) \longmapsto((0 \wedge x) \hookrightarrow(x \wedge 0))$ by (143) and (200)
202. $0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow(x \hookrightarrow(0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow 0))))))=(0 \wedge x) \hookrightarrow((0 \wedge x) \hookrightarrow(x \wedge 0))$ by (10) and (201)
203. $0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow(x \hookrightarrow(x \hookrightarrow 0))))=(0 \wedge x) \hookrightarrow((0 \wedge x) \mapsto(x \wedge 0))$ by (126) and (202)
204. $0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow(x \hookrightarrow 0)))=(0 \wedge x) \rightharpoondown((0 \wedge x) \rightharpoondown(x \wedge 0)) \quad$ by (60) and (203)
205. $0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow(x \hookrightarrow 0)))=0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow(x \hookrightarrow(x \wedge 0)))) \quad$ by (10) and (204)
206. $0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow(x \hookrightarrow 0)))=0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow 0)) \quad$ by (194) and (205)
207. $((x \wedge y) \mapsto 0) \wedge(y \wedge x)=(x \wedge y) \wedge((x \wedge y) \mapsto 0) \quad$ by (17) and (17)
208. $((x \wedge y) \mapsto 0) \wedge(y \wedge x)=(x \mapsto(x \mapsto(y \mapsto(y \mapsto 0)))) \wedge(x \wedge y) \quad$ by (100) and (207)
209. $0 \hookrightarrow((0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow(x \hookrightarrow 0)))) \wedge(0 \wedge x))=(0 \wedge x) \mapsto(x \wedge 0) \quad$ by (208) and (197)
210. $0 \hookrightarrow((0 \hookrightarrow(0 \hookrightarrow(x \hookrightarrow 0))) \wedge(0 \wedge x))=(0 \wedge x) \longmapsto(x \wedge 0) \quad$ by (206) and (209)
211. $0 \hookrightarrow((0 \hookrightarrow(x \hookrightarrow 0)) \wedge(0 \wedge x))=(0 \wedge x) \hookrightarrow(x \wedge 0) \quad$ by (173) and (210)
212. $(0 \hookrightarrow 0) \wedge(((x \hookrightarrow 0) \wedge(0 \hookrightarrow 0)) \multimap 0)=(((0 \wedge(0 \hookrightarrow(0 \hookrightarrow 0))) \mapsto 0) \wedge((x \wedge((0 \wedge((0 \hookrightarrow$ 0) $\rightharpoondown 0)) \rightharpoondown 0)$) $\rightharpoondown 0)$) $\rightharpoondown 0$
by (75) and (43)
213. $(0 \hookrightarrow 0) \wedge((x \hookrightarrow(0 \wedge x)) \hookrightarrow 0)=(((0 \wedge(0 \hookrightarrow(0 \hookrightarrow 0))) \rightharpoondown 0) \wedge((x \wedge((0 \wedge((0 \hookrightarrow 0) \longmapsto$ $0)) \hookrightarrow 0)) \hookrightarrow 0)) \rightharpoondown 0 \quad$ by (46) and (212)
214. $(((x \multimap(0 \wedge x)) \rightharpoondown 0) \rightharpoondown 0) \multimap(0 \wedge(((x \hookrightarrow(0 \wedge x)) \multimap 0) \rightharpoondown 0))=(((0 \wedge(0 \hookrightarrow(0 \hookrightarrow$ $0))) \hookrightarrow 0) \wedge((x \wedge((0 \wedge((0 \hookrightarrow 0) \hookrightarrow 0)) \mapsto 0)) \mapsto 0)) \mapsto 0 \quad$ by (86) and (213)
215. $((0 \hookrightarrow 0) \mapsto(x \mapsto(0 \wedge x))) \mapsto(0 \wedge(((x \hookrightarrow(0 \wedge x)) \mapsto 0) \mapsto 0))=(((0 \wedge(0 \hookrightarrow(0 \hookrightarrow$ $0))$) $\rightarrow 0) \wedge((x \wedge((0 \wedge((0 \hookrightarrow 0) \hookrightarrow 0)) \multimap 0)) \multimap 0)) \rightharpoondown 0 \quad$ by (67) and (214)
216. $(x \hookrightarrow(0 \wedge x)) \multimap(0 \wedge(((x \hookrightarrow(0 \wedge x)) \multimap 0) \multimap 0))=(((0 \wedge(0 \hookrightarrow(0 \hookrightarrow 0))) \multimap 0) \wedge((x \wedge$ $((0 \wedge((0 \hookrightarrow 0) \rightharpoondown 0)) \rightharpoondown 0)) \rightharpoondown 0)) \rightharpoondown 0 \quad$ by (3) and (215)
217. $(x \hookrightarrow(0 \wedge x)) \multimap(0 \wedge((0 \hookrightarrow 0) \hookrightarrow(x \hookrightarrow(0 \wedge x))))=(((0 \wedge(0 \hookrightarrow(0 \hookrightarrow 0))) \hookrightarrow 0) \wedge((x \wedge$ $((0 \wedge((0 \hookrightarrow 0) \hookrightarrow 0)) \rightharpoondown 0)) \hookrightarrow 0)) \rightharpoondown 0$
by (67) and (216)
218. $(x \hookrightarrow(0 \wedge x)) \hookrightarrow(0 \wedge(x \hookrightarrow(0 \wedge x)))=(((0 \wedge(0 \hookrightarrow(0 \hookrightarrow 0))) \longmapsto 0) \wedge((x \wedge((0 \wedge((0 \hookrightarrow$ $0) \mapsto 0)) \mapsto 0)$) $\hookrightarrow 0)) \mapsto 0 \quad$ by (3) and (217)
219. $(x \hookrightarrow 0) \longmapsto(0 \wedge(x \hookrightarrow 0))=(((0 \wedge(0 \hookrightarrow(0 \hookrightarrow 0))) \longmapsto 0) \wedge((x \wedge((0 \wedge((0 \hookrightarrow 0) \mapsto 0)) \longmapsto$ $0)) ~ \rightharpoondown 0)) \rightharpoondown 0 \quad$ by (108) and (218)
220. $(x \hookrightarrow 0) \hookrightarrow(0 \wedge(x \hookrightarrow 0))=(((0 \wedge(0 \hookrightarrow 0)) \rightharpoondown 0) \wedge((x \wedge((0 \wedge((0 \hookrightarrow 0) \hookrightarrow 0)) \mapsto 0)) \longmapsto$ 0)) $\rightharpoondown 0$
by (80) and (219)
221. $(x \hookrightarrow 0) \hookrightarrow(0 \wedge(x \hookrightarrow 0))=((0 \hookrightarrow 0) \wedge((x \wedge((0 \wedge((0 \hookrightarrow 0) \hookrightarrow 0)) \mapsto 0)) \hookrightarrow 0)) \rightharpoondown 0$
by (135) and (220)
222. $(x \hookrightarrow 0) \longmapsto(0 \wedge(x \hookrightarrow 0))=((0 \hookrightarrow 0) \wedge((x \wedge((0 \wedge 0) \hookrightarrow 0)) \rightharpoondown 0)) \mapsto 0 \quad$ by (3) and (221)
223. $(x \hookrightarrow 0) \mapsto(0 \wedge(x \hookrightarrow 0))=((0 \hookrightarrow 0) \wedge((x \wedge(0 \hookrightarrow 0)) \mapsto 0)) \rightharpoondown 0 \quad$ by (18) and (222)
224. $(x \hookrightarrow 0) \longmapsto(0 \wedge(x \hookrightarrow 0))=((0 \hookrightarrow 0) \wedge((0 \hookrightarrow 0) \longmapsto(x \hookrightarrow 0))) \longmapsto 0$ by (109) and (223)
225. $(x \hookrightarrow 0) \rightharpoondown(0 \wedge(x \hookrightarrow 0))=((0 \hookrightarrow 0) \wedge(x \hookrightarrow 0)) \rightharpoondown 0$
by (3) and (224)
226. $(x \mapsto 0) \longmapsto(0 \wedge(x \longmapsto 0))=(((x \longmapsto 0) \longmapsto 0) \longmapsto(0 \wedge((x \mapsto 0) \mapsto 0))) \longmapsto 0$ by (86) and (225)
227. $(x \longmapsto 0) \longmapsto(0 \wedge(x \hookrightarrow 0))=(x \longmapsto(0 \wedge((x \longmapsto 0) \longmapsto 0))) \longmapsto 0 \quad$ by (24) and (226)
228. $(x \longmapsto 0) \longmapsto(0 \wedge(x \longmapsto 0))=(x \longmapsto(0 \wedge x)) \longmapsto 0$ by (24) and (227)
229. $(x \wedge 0) \wedge(((0 \hookrightarrow(y \longmapsto y)) \mapsto 0) \mapsto((x \longmapsto(0 \wedge x)) \longmapsto 0))=x \wedge 0 \quad$ by (228) and (176)
230. $0 \hookrightarrow((x \wedge(x \mapsto 0)) \wedge y)=((0 \mapsto y) \longmapsto(0 \wedge(0 \longmapsto y))) \longmapsto 0 \quad$ by (228) and (98)
231. $x \hookrightarrow((x \longmapsto(0 \wedge x)) \longmapsto 0)=0 \longmapsto(0 \wedge(x \longmapsto 0))$
232. $x \wedge(y \hookrightarrow y)=(x \longmapsto(0 \wedge x)) \longmapsto 0$
by (228) and (97)
233. $x \wedge(y \longmapsto y)=(x \longmapsto(x \wedge 0)) \longmapsto 0$ by (228) and (93)
234. $x \wedge(((x \longmapsto(0 \wedge x)) \longmapsto 0) \longmapsto 0)=x \wedge(x \mapsto((y \mapsto y) \longmapsto 0))$ by (17) and (232)
235. $x \wedge((0 \mapsto 0) \mapsto(x \longmapsto(0 \wedge x)))=x \wedge(x \mapsto((y \mapsto y) \longmapsto 0))$
236. $x \wedge(x \mapsto(0 \wedge x))=x \wedge(x \mapsto((y \mapsto y) \longmapsto 0))$ by (232) and (62)
237. $x \wedge(x \mapsto(0 \wedge x))=x \wedge(x \mapsto 0)$
by (67) and (234)
by (3) and (235)
by (3) and (236)
238. $(0 \wedge x) \wedge(((x \wedge 0) \longmapsto 0) \longmapsto((0 \wedge x) \longmapsto 0))=((0 \wedge x) \longmapsto((0 \wedge x) \wedge 0)) \longmapsto 0 \quad$ by (233)
and (195)
239. $(0 \wedge x) \wedge(((x \wedge 0) \longmapsto 0) \longmapsto((0 \wedge x) \longmapsto 0))=((0 \wedge x) \longmapsto(0 \wedge(0 \wedge x))) \longmapsto 0$ by (17) and (238)
240. $((((x \longmapsto x) \longmapsto 0) \longmapsto(x \longmapsto x)) \longmapsto(0 \wedge(((x \longmapsto x) \longmapsto 0) \longmapsto(x \longmapsto x)))) \longmapsto 0=x \longmapsto x$ by (232) and (75)
241. $((0 \longmapsto(x \longmapsto x)) \mapsto(0 \wedge(((x \mapsto x) \mapsto 0) \longmapsto(x \longmapsto x)))) \mapsto 0=x \longmapsto x$ by (3) and (240)
242. $((0 \longmapsto(x \longmapsto x)) \longmapsto(0 \wedge(0 \hookrightarrow(x \mapsto x))) \longmapsto 0=x \mapsto x \quad$ by (3) and (241)
243. $((0 \mapsto(x \mapsto x)) \longmapsto 0) \longmapsto 0=x \mapsto x \quad$ by (132) and (242)
244. $0 \mapsto(x \mapsto x)=x \mapsto x \quad$ by (24) and (243)
245. $((0 \wedge x) \longmapsto(x \wedge 0)) \wedge y=(y \longmapsto(0 \wedge y)) \longmapsto 0 \quad$ by (190) and (232)
246. $(x \wedge 0) \wedge(((y \longmapsto y) \longmapsto 0) \longmapsto((x \longmapsto(0 \wedge x)) \longmapsto 0))=x \wedge 0 \quad$ by (244) and (229)
247. $(x \wedge 0) \wedge(0 \longmapsto((x \longmapsto(0 \wedge x)) \longmapsto 0))=x \wedge 0 \quad$ by (3) and (246)
248. $(x \wedge 0) \wedge((x \longmapsto 0) \longmapsto((x \longmapsto 0) \longmapsto(0 \longmapsto((x \longmapsto x) \longmapsto 0))))=x \wedge 0$ by (169) and (247)
249. $(x \wedge 0) \wedge((x \longmapsto 0) \longmapsto((x \longmapsto 0) \longmapsto(0 \longmapsto 0)))=x \wedge 0$
by (3) and (248)
250. $(x \wedge 0) \wedge((x \mapsto 0) \mapsto(0 \mapsto((x \longmapsto 0) \longmapsto 0)))=x \wedge 0 \quad$ by (25) and (249)
251. $(x \wedge 0) \wedge((x \longmapsto 0) \longmapsto(0 \longmapsto x))=x \wedge 0 \quad$ by (24) and (250)
252. $(x \wedge 0) \wedge(0 \hookrightarrow x)=x \wedge 0 \quad$ by (151) and (251)
253. $(0 \hookrightarrow x) \wedge(x \wedge 0)=x \wedge 0 \quad$ by (17) and (252)
254. $(x \mapsto x) \wedge(0 \mapsto y)=0 \mapsto((x \longmapsto x) \wedge y) \quad$ by (244) and (7)
255. $((0 \hookrightarrow y) \longmapsto(0 \wedge(0 \mapsto y))) \mapsto 0=0 \mapsto((x \mapsto x) \wedge y) \quad$ by (232) and (254)
256. $((0 \longmapsto y) \longmapsto(0 \wedge(0 \hookrightarrow y))) \longmapsto 0=0 \longmapsto((y \mapsto(0 \wedge y)) \longmapsto 0) \quad$ by (232) and (255)
257. $((0 \longmapsto y) \longmapsto(0 \wedge(0 \longmapsto y))) \longmapsto 0=(y \mapsto 0) \longmapsto((y \longmapsto 0) \longmapsto(0 \longmapsto((y \longmapsto y) \longmapsto 0)))$
by (169) and (256)
258. $((0 \longmapsto y) \longmapsto(0 \wedge(0 \longmapsto y))) \longmapsto 0=(y \mapsto 0) \longmapsto((y \longmapsto 0) \longmapsto(0 \longmapsto 0))$ by (3) and (257)
259. $((0 \longmapsto y) \longmapsto(0 \wedge(0 \longmapsto y))) \longmapsto 0=(y \longmapsto 0) \longmapsto(0 \longmapsto((y \hookrightarrow 0) \longmapsto 0))$ by (25) and (258)
260. $((0 \longmapsto y) \longmapsto(0 \wedge(0 \hookrightarrow y))) \longmapsto 0=(y \longmapsto 0) \longmapsto(0 \longmapsto y) \quad$ by (24) and (259)
261. $((0 \longmapsto x) \longmapsto(0 \wedge(0 \hookrightarrow x))) \longmapsto 0=0 \longmapsto x \quad$ by (151) and (260)
262. $0 \hookrightarrow((x \wedge(x \hookrightarrow 0)) \wedge y)=0 \longmapsto y \quad$ by (261) and (230)
263. $x \wedge((x \wedge(x \longmapsto 0)) \longmapsto 0)=x \wedge(x \longmapsto((x \longmapsto(0 \wedge x)) \longmapsto 0)) \quad$ by (237) and (62)
264. $x \wedge(x \longmapsto((x \hookrightarrow 0) \longmapsto 0))=x \wedge(x \hookrightarrow((x \longmapsto(0 \wedge x)) \longmapsto 0)) \quad$ by (62) and (263)
265. $x \wedge(x \longmapsto x)=x \wedge(x \longmapsto((x \longmapsto(0 \wedge x)) \longmapsto 0)) \quad$ by (24) and (264)
266. $(x \longmapsto(x \wedge 0)) \longmapsto 0=x \wedge(x \mapsto((x \mapsto(0 \wedge x)) \longmapsto 0)) \quad$ by (233) and (265)
267. $(x \wedge((y \longmapsto(0 \wedge 0)) \longmapsto 0)) \wedge((((y \wedge x) \longmapsto 0) \wedge((y \wedge x) \longmapsto 0)) \longmapsto z)=(((y \wedge x) \longmapsto 0) \wedge$
$((y \wedge x) \longmapsto 0)) \longmapsto(0 \wedge z)$
by (7) and (44)
268. $(x \wedge((y \longmapsto 0) \longmapsto 0)) \wedge((((y \wedge x) \longmapsto 0) \wedge((y \wedge x) \longmapsto 0)) \longmapsto z)=(((y \wedge x) \mapsto 0) \wedge((y \wedge x) \longmapsto$ $0)) \longmapsto(0 \wedge z)$
by (18) and (267)
269. $(x \wedge y) \wedge((((y \wedge x) \longmapsto 0) \wedge((y \wedge x) \longmapsto 0)) \rightharpoondown z)=(((y \wedge x) \mapsto 0) \wedge((y \wedge x) \longmapsto 0)) \longmapsto(0 \wedge z)$ by (24) and (268)
270. $(x \wedge y) \wedge(((y \wedge x) \mapsto 0) \longmapsto z)=(((y \wedge x) \mapsto 0) \wedge((y \wedge x) \mapsto 0)) \longmapsto(0 \wedge z) \quad$ by (18) and (269)
271. $(x \wedge y) \wedge(((y \wedge x) \hookrightarrow 0) \rightharpoondown z)=((y \wedge x) \longmapsto 0) \longmapsto(0 \wedge z) \quad$ by (18) and (270)
272. $((x \wedge 0) \multimap 0) \rightharpoondown(0 \wedge((0 \wedge x) \multimap 0))=((0 \wedge x) \mapsto(0 \wedge(0 \wedge x))) \rightharpoondown 0 \quad$ by (271) and (239)
273. $((x \wedge 0) \hookrightarrow 0) \rightharpoondown(0 \wedge(0 \hookrightarrow(x \hookrightarrow 0)))=((0 \wedge x) \hookrightarrow(0 \wedge(0 \wedge x))) \rightharpoondown 0 \quad$ by (62) and (272)
274. $0 \hookrightarrow(((x \hookrightarrow x) \wedge 0) \wedge y)=0 \longmapsto y$
275. $0 \hookrightarrow((0 \wedge(x \hookrightarrow x)) \wedge y)=0 \hookrightarrow y$
by (3) and (262)
276. $0 \hookrightarrow(((0 \hookrightarrow(0 \wedge 0)) \rightharpoondown 0) \wedge y)=0 \hookrightarrow y$
by (17) and (274)
277. $0 \hookrightarrow(((0 \hookrightarrow 0) \longmapsto 0) \wedge y)=0 \mapsto y$
by (233) and (275)
278. $0 \hookrightarrow(0 \wedge x)=0 \hookrightarrow x$
279. $0 \hookrightarrow(x \hookrightarrow 0)=x \hookrightarrow((x \hookrightarrow(0 \wedge x)) \multimap 0)$
by (18) and (276)
by (3) and (277)
280. $x \wedge(0 \hookrightarrow(x \hookrightarrow 0))=(x \hookrightarrow(x \wedge 0)) \mapsto 0$
by (278) and (231)
281. $(0 \hookrightarrow x) \wedge(0 \hookrightarrow y)=0 \hookrightarrow(x \wedge(0 \wedge y))$ by (279) and (266)
282. $0 \mapsto(x \wedge y)=0 \mapsto(x \wedge(0 \wedge y))$
by (278) and (7)
283. $0 \hookrightarrow((0 \hookrightarrow(x \hookrightarrow 0)) \wedge x)=(0 \wedge x) \mapsto(x \wedge 0)$
by (7) and (281)
284. $0 \hookrightarrow(x \wedge(0 \hookrightarrow(x \hookrightarrow 0)))=(0 \wedge x) \hookrightarrow(x \wedge 0)$
by (282) and (211)
285. $0 \hookrightarrow((x \hookrightarrow(x \wedge 0)) \mapsto 0)=(0 \wedge x) \mapsto(x \wedge 0) \quad$ by (280) and (284)
286. $(x \hookrightarrow x) \mapsto((x \hookrightarrow x) \mapsto(0 \hookrightarrow((x \hookrightarrow 0) \hookrightarrow 0)))=(0 \wedge x) \rightharpoondown(x \wedge 0)$ by (169) and (285)
287. $(x \hookrightarrow x) \mapsto((x \hookrightarrow x) \mapsto(0 \hookrightarrow x))=(0 \wedge x) \mapsto(x \wedge 0) \quad$ by (24) and (286)
288. $(x \hookrightarrow x) \hookrightarrow(0 \hookrightarrow x)=(0 \wedge x) \mapsto(x \wedge 0)$
by (3) and (287)
289. $0 \hookrightarrow x=(0 \wedge x) \mapsto(x \wedge 0)$
290. $(0 \hookrightarrow x) \wedge y=(y \mapsto(0 \wedge y)) \mapsto 0$
by (3) and (288)
291. $((x \wedge 0) \hookrightarrow(0 \wedge(x \wedge 0))) \longmapsto 0=x \wedge 0$
by (289) and (245)
292. $((0 \wedge(0 \hookrightarrow x)) \longmapsto 0) \longmapsto 0=x \wedge 0$
by (290) and (253)
293. $(((0 \hookrightarrow(0 \wedge 0)) \longmapsto 0) \longleftrightarrow 0) \longmapsto 0=x \wedge 0$ by (189) and (291)
294. $((0) 0)-0)$ by (290) and (292)
294. $((0 \hookrightarrow 0) \longrightarrow 0) \longrightarrow 0) \longrightarrow 0=x \wedge 0$ by (18) and (293)
295. $(0 \hookrightarrow 0) \longleftrightarrow 0=x \wedge 0$
by (3) and (294)
296. $0=x \wedge 0$
by (3) and (295)
(J. M. Cornejo) Instituto de Matemática (INMABB), Departamento de Matemática, UniVERSIDAD NACIONAL DEL SUR (UNS)-CONICET, Av. AlEm 1253, B8000CPB BAhía Blanca, ArGENTINA

Email address: juanmanuelcornejo@gmail.com
(A. Gallardo) Instituto de Matemática (INMABB), UNiversidad Nacional del Sur (UNS)CONICET, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina

Email address: andresgallardo123@gmail.com
(L. Monteiro) Instituto de Matemática (INMABB), Departamento de Matemática, UniverSidad Nacional del Sur (UNS)-CONICET, Av. AlEm 1253, B8000CPB Bahía Blanca, ArGENTINA

Email address: 1fmonteiro0510@gmail.com
(I. Viglizzo) Instituto de Matemática (INMABB), Departamento de Matemática, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina

Email address: viglizzo@gmail.com

[^0]: 2020 Mathematics Subject Classification. Primary 03B60; Secondary 06D75.

