Ricardo Maronna

A Characterization of Morgan lattices
A CHARACTERISATION OF MORGAN LATTICES

by

Ricardo Maronna

1964

Instituto de Matemática
Universidad Nacional del Sur
Bahía Blanca
Este fascículo contiene el Preprint de un trabajo en curso de publicación en Portugaliae Mathematica.

Ce fascicule contient le Preprint d’un travail à être publié dans Portugaliae Mathematica.
A CHARACTERISATION OF MORGAN LATTICES

by Ricardo Maronna

Morgan lattices are defined as distributive lattices possessing a monary operation (−) which obeys the involutory law (−−a = a) and de Morgan laws. This structure has been studied by C. Moisil[3] (i), J. Kalman[2], and A. Monteiro[4]; an important particular case has also been considered by Byalinicki-Birula and Rasiowa[1] under the name of quasi-boolean algebras.

The purpose of this article is to characterise Morgan lattices by means of operations of infimum (Λ) and negation (−). (ii). This work is made easy by the use of Sholander's characterisation[5] of a distributive lattice as a non empty set with the binary operations (Λ)

(i) See the bibliographical references at the end of this article.
(ii) It is evident that a dual characterisation can be done using supremum (Λ) instead of infimum.
and (\lor), which fulfill the following axioms:

\[S_1 \quad a = a \land (a \lor b) \]
\[S_2 \quad a \land (b \lor c) = (c \land a) \lor (b \land a) \]

THEOREM 1: Let \(A \) be a non empty set, with the operations (\land) and (\lor). Let us define:

1) \(a \lor b = \neg (\neg a \land \neg b) \)

The system \((A, \land, \lor)\) is a Morgan lattice if and only if it obeys the following axioms:

\[M_1 \quad a = a \land \neg (\neg a \land \neg b) \]
\[M_2 \quad a \land \neg (b \land \neg c) = \neg (\neg (c \land a) \land \neg (b \land a)) \]

DEMONSTRATION: It is evident that \(M_1 \) and \(M_2 \) are necessary. To prove that they are sufficient, we shall first prove that \(A \) is a distributive lattice; i.e., that it obeys \(S_1 \) and \(S_2 \), which are readily verified.

\[S_1 \quad a \land (a \lor b) = a \land \neg (\neg a \land \neg b) = a \]
\[S_2 \quad (c \land a) \lor (b \land a) = \neg (\neg (c \land a) \land \neg (b \land a)) = \]
\[\quad = a \land \neg (b \land \neg c) = a \land (b \lor c) \]

We must still prove:

2) \(\neg \neg a = a \)
3) \(\neg (a \lor b) = \neg a \land \neg b \)

As \(A \) is a distributive lattice, we have:

4) \(a \land a = a \)
5) \(a \land b = b \land a \)

From 5) and \(M_2 \) we obtain:
6) \[a \land \neg(b \land \neg c) = \neg((b \land a) \land \neg(c \land a)) \]
and replacing \(b \) and \(c \) by \(a \) it results, by 4)

7) \[a \land \neg(a \land \neg a) = \neg((a \land a) \land \neg(a \land a)) = \]
\[= \neg(-a \land \neg a) = -a \]

and applying \(M_1 \) to the first member of 7), we get 2).

As to 3), it is immediately obtained from 1) and 2).

THEOREM 2: Postulates \(M_1 \) and \(M_2 \) are independent.

DEMONSTRATION: Let \(A \) be the set \(\{0, 1\} \). Let us define \(\neg a = a \), and let us define \(a \land b \) in two different ways:

1) \[a \land b = a \]

ii) \[a \land b = a \cdot b \]

In the first case, \((A, \land, \neg)\) verifies \(M_1 \), but not \(M_2 \). With the second definition, \(M_2 \) is satisfied, but not \(M_1 \).
BIBLIOGRAPHY

