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ABSTRACT 

In his interesting paper,  

“Can one hear the shape of a drum?”, Am. Math. Monthly 73 (1966), no. 4, 1-23, 

M. Kac called the attention to a theorem by Å. Pleijel,  

“A study of certain Green’s functions with applications in the theory of  

vibrating membranes”, Arkiv för Matematik 2 (1954), nr. 29, 553-569.  

The paper by the authors, 

“Remarks on a theorem of Å. Pleijel and related topics, I, Behavior of the 

 eigenvalues of classical boundary problems in the plane”, Notas de Álgebra y 

 Análisis #19, INMABB-CONICET, Universidad Nacional del Sur, Bahía Blanca, 

Argentina, 2005, MR2157976 (2006h:35196), 

was an attempt to reduce the boundary requirements of the above-mentioned work. The 

following result was obtained:  

Theorem. If the plane Jordan region   of area | | has a    boundary   of length  

〈 〉 and {  } is the set of eigenvalues of the Dirichlet problem for the Laplacian  

in   then it holds on       :  ∑         
  

| |

  

 

   
 

〈 〉

  

 

    ⁄
     ,  

where      is a holomorphic function on       . 

In the present paper, we allow   to have a finite number of corners, that is,   is the 

boundary of a region   called “curved polygon”, and obtain the same result. In our 

approach, it is crucial the use of a refinement of the implicit function theorem to which 

we devote all §5.  

 

RESUMEN 

Al sumario precedente podemos agregar que el teorema de Å. Pleijel en cuestión parece 

ser un resultado independiente de la regularidad del contorno de la región en el caso del 

problema de Dirichlet y podría conjeturarse que es válido para regiones de Jordan 

planas arbitrarias. En el trabajo presente vemos que es válido para regiones con 

contorno    salvo por un número finito de puntos excepcionales de ese contorno, en 

particular, para polígonos convexos. Mediante un proceso límite descripto en el 

Apéndice 2 §8, puede demostrarse que el resultado es válido para otras regiones y es 

razonable pensar que entre ellas se encuentran los óvalos, que son regiones cuyo 

contorno puede tener infinitos puntos sin derivada. Quizá debamos agregar que el 

método al que hemos recurrido para demostrar el teorema, y que hemos utilizado en 

otras ocasiones, depende esencialmente de la parametrización del contorno. 
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ON SPECTRAL DIRICHLET SERIES 

A theorem of Å. Pleijel for curved polygons 

by  

Agnes Benedek and Rafael Panzone 

 

1. PRELIMINARIES. In most cases of this paper      is a    Jordan region or a 

   curved polygon. That is,      is a Jordan curve defined by means of functions 

               with a tangent of length one at each point in the first case or   has a 

finite number of exceptional points, the corners, in the second one. The precise 

definitions are in the next paragraphs. The following result holds (cf. [P], [K], [Z]): 
 

THEOREM 1. If the Jordan region   of area | | has a    boundary   of length 〈 〉 and 

{  } is the set of eigenvalues of the Dirichlet problem for the Laplacian in   then it 

holds on       : ∑         
  

| |

  

 

   
 

〈 〉

  

 

    ⁄
     , where      is a 

holomorphic function on       . 

 

2. LOCAL COORDINATES. To deal with regular regions it is convenient to 

introduce local coordinates around the boundary in the following way where we follow 

Å. Pleijel. Let s be the parameter arc length of the   -Jordan curve  , (first case, see 

Fig. 3), starting at the origin O.  We assume that   is positively oriented. 

The points in   will be denoted by                     ,          〈 〉 , with 

〈 〉          . We assume that          [  〈 〉] ,          〈 〉 . Let  ⃗   ⃗     

(           )  (  ̇      ̇    )        be the interior normal versor at a regular 

boundary point     . If   is an oriented closed arc we suppose that it is contained in a 

   open arc   and so we can include the extreme points among the regular ones.  

Suppose       and let   be an interval   [      ]  [  〈 〉] such that 

       is a regular point for    . 

Let us define the map T.                       ⃗    , from the rectangle  

         to the strip     {              }, (Figs. 3 and 4 for the first case).  

          denotes a point of the rectangle          and           represents its 

image in the strip   . Then       is written as  

                               (             )                   , 
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       〈 〉, |  |   . Thus, if      then    . Given          its image will 

be also written as         to underline the fact that it is in J. For   sufficiently small 

the map T of the rectangle          {               |  |   } is a local 

homeomorphism onto its image.  

In fact, since by hypothesis         for   [   ], T is a 1C  map and ( 
 
    it can 

be written as: 

(1)      {
        (  )   

 
 ̇     

        (  )   
 
 ̇     

 . 

Since  
 
 is the arclength, the interior normal  ⃗   ⃗ ( 

 
)  (  (  )   (  ))  

   ̇ (  )  ̇ (  )  is such that | ⃗ |   , (cf. [G], Ch. 2). 

Its jacobian B is the absolute value of the determinant of the jacobian matrix, 

(  )                  
        

        
 |

 ̇ (  )   
 
 ̈       ̇     

 ̇ (  )   
 
 ̈      ̇     

|     
 
   

 
 . 

 ( 
 
)   ̈ (  ) ̇ (  )   ̈ (  ) ̇ (  ) is the curvature of J at the point    

 
   . 

For   sufficiently small    
 
 ( 

 
)    whenever | 

 
|   . In this case  

    
        

        
    

 
   

 
  and T is locally a homeomorphism. Besides, 

(1  )         (
        

        
)
  

 (   
 
   

 
 )

  
  

        |
 ̇         

 
 ( 

 
) ⁄  ̇         

 
 ( 

 
) ⁄

(  ̇ (  )     ̈     )     
 
 ( 

 
) ⁄   ̇ (  )   

 
 ̈          

 
 ( 

 
) ⁄

|, 

and |     |  | ̈    |. 

 

3. Irregular points at the boundary. See Figure 6. In this example the Jordan curve 

     is the union of three    closed arcs. The continuous contour of the cap is    

with the exception of three singularities. Points 2 and 3 are of the same nature: the first 

derivative has a jump at them. At point 1 only the second derivative has a jump. 

DEFINITION 1. A point       , a Jordan curve, will be called regular when its 

(continuous) components        have first and second continuous derivatives in a 

neighborhood of     . Points which are not regular will be called irregular.  

Among them there are the singular ones which are isolated irregular points. Precisely, 

DEFINITION 2. A point       is called singular if it is an isolated irregular point such 

that the function  ̈      does not exist at       but  
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(*)   ̈      has a finite limit at     and     and there exist tangent vectors of length  

       one at    .               

If all the irregular points are singular then      describes a rectifiable Jordan curve 

union of a finite set of closed    Jordan arcs. All ordinary polygons belong to this 

category. 

DEFINITION 3. A Jordan domain   with a boundary   (positively oriented) will be 

called a proper curved polygon if   has a finite number of singular points with no 

reëntring angles at them. That is, the interior angles at singular points  

(**)                   are positive and less than  .  

In this case, if      is singular at    we shall say that   has a (proper) corner at       

and that    is a singular parameter point.   shall denote the finite set of singular 

parameter points. Assuming that   is a regular point of  ,   {      | |}, the values of 

the parameter   written according to their order of magnitude. 

   shall denote the open parameter interval between    and      and    the closed side of 

  between       and        , (of course,  | |     ).  

We shall accept that for all  , (cf. [G], Th. 2.13), 

(***)     can be continued as   , an open Jordan arc, and with the same properties of   , 

          along an open interval       ̅. 

Ordinary convex polygons are proper curved polygons. In what follows we give a proof 

of a generalized version of Theorem 1 §1 that includes curved polygons. 

DEFINITION 4. A curved polygon is a    Jordan curve, (| |   ), or a piecewise    

Jordan curve with | | proper corners,   | |   . 

In case that there is only one singular parameter point, to avoid that            , we 

shall add any regular point as    (i.e., we add a phony corner      ). Therefore, we may 

suppose that either | |    or | |   . 

 

4. Homeomorphisms. We write        
̅̅̅̅  . Its positive side by definition will be the 

one in contact with  . Let us see, perhaps by using a smaller  , (cf. §2), that for all    

       | |  our T is globally a homeomorphism from  

                                    
̅̅̅̅          onto     

   (  
̅̅̅̅        ). 

DEFINITION 1.          |     |      | ̈    |,      
 

    
. 

Then      [     and            if | |   . In general,       ].  
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Fig. 1 

 

 

                                                                                                                                                    

 

 

 

 

 

 

 

                                                                                                                                                 

                                                                                                                     

 

Fig. 6 
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LEMMA 1. There exists a         such that for any            ,   is a 

homeomorphism from   
̅̅̅̅         onto its image   

 . 

PROOF. Let C  {                       },      
̅̅̅̅ ,     , be a finite covering 

of   
̅̅̅̅  with the property that for some     ,      √ , (cf. §2), 

(#)    is a homeomorphism from (                [       ])           onto  

                    ((                [       ])           ),  

a relative neighborhood of      .  

Let      {           } and      {            }. 

Call      
|   |  

{ |         |        ̅  }. Then    .  

We claim that the lemma holds for 

(1)                                         
 

 
    √ .  

In fact, suppose    (  
̅̅̅̅        )   (  

̅̅̅̅        )  is not one to one. Then there 

exists     
  such that                   . Now, if                , then in 

view of (#) necessarily   ̅                . Therefore, |   |      .  

Using the definition of  ,   |   |  |         |           , a 

contradiction,              QED. 

Lemma 1 holds for all   and for all          where 

                                                               . 

DEFINITION 2. Given                    
   ,      ,  ̂ denotes the 

symmetric point of   with respect to    :  ̂                      . 

If                  also belongs to   
    then  ̂         ̂        implies 

               .  

Let us put together some symbols we used and others that we shall use in what follows.  

NOTATION.        
̅̅̅̅  { }      

̅̅̅̅  . For       ,      {              }, 

   {              }          , but   
   (  

̅̅̅̅        ).   
    

    and 

           . If | |   ,                     and   
   ([  〈 〉]        ). 

(   is an open set containing  , sometimes called a Minkowski neighborhood of  .) 

DEFINITION 3.  ̃ 
  {    

                 }. 
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4.1. On corners. By definition of a curved polygon, if | |   , it is possible to choose a 

positive   , let us call it       , so small that for all   and all     
    

    it 

holds the 

LEMMA 1. i) The following relation is verified for two indices     at most and in 

such a way that if this happens then   and   are consecutive, 

                                                          
    

   , 

ii)                                             (         )     . 

But let us prove first the auxiliary 

PROPOSITION 1.        
 . Idem for   :        

 . 

In fact, the open disk with radius   and center      contains the segment 

                         , QED. 

PROOF OF LEMMA 1 AND NEXT FORMULA (1) (cf. § 2). Let  

                                    {|           |      } 

be the minimum distance between two vertices of  . Then, the disks  ̅ ( (  )), 

      | |, are pairwise disjoint whenever      . 

We suppose without loss of generality that (0,0) is the initial extreme of       

corresponding to  
 
  . After a rotation of the coordinate system we can assume that 

 ̇    ( ̇ (  )  ̇ (  ))|    
      .  

Therefore, in a neighborhood of the origin    is a strictly increasing function of  
 
 

because of 
   

   
  . We consider this function only on    

 
    . There  ̇  and  ̈  

are continuous functions since there is no      in this interval.  

Because of 
   

   
  , we can eliminate the parameter  

 
 from the equation of the curve 

     
 
  obtaining           with       ,         ,        

   

   
 

 ̇     

 ̇     
   

and 

                   
  

   
   

 

   
 

   
   

.
 

   
(
 ̇     

 ̇     
)/  

     

 ̇     
 

   
   

 
     

 ̇     
  .  

Therefore, if  ̇          then |      |        and             
 , where 

|    |       . We obtained: 

if  ̇ (  )  
 

 
 whenever    

 
       then 

                                                   for            it holds that |     |         
 . 
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Where does  ̇          hold? From  ̇ (  )    ∫  ̈               
 

  
 

 we see 

that it is enough to ask that    
 
           together with    

 
     to make 

sure that  ̇  is a continuous function greater than ½. 

That is, if         ,                      then 

(1)                               |  |  |     |     
     .  

On the other hand, we have,    [    ̇      ̇]  
 (| | )

   
  | |  ̇        ̇ , 

          
  (| | )

   
   | |  ̈   [     ̈     ̈ ]   [     ̈]      | |     . 

In consequence,  | |  ̈  is positive and  | |  ̇  is increasing if | |        .  

Since  | |  ̇      ,  | |  ̇  is positive as long as the continuous curve      that starts 

at   does not reach         . This is the case for                         , 

since |    |             . Therefore, 

(2)                           |    | is strictly increasing as long as      .  

Thus, the curve  

(†) {           } exits any disk  ̅       if           and does not re-enter in 

it.  

However, {          } could re-enter for    . Analogously, the curve 

{            } enters in any  ̅       if           and does not exit. 

Let       and      be the first point where the curve exits  ̅         and      the 

last one where the curve   {             〈 〉} enters  ̅        . Let      be the 

piece of the curve between        and     . Then     ̅̅ ̅̅ ̅̅    ̅      ̅̅ ̅̅ ̅̅      . 

Defining                  , any number   such that          for all   satisfies 

      ̅     . Then, i) follows from Proposition 1. 

ii) Since the angles of a curved polygon are by definition smaller than  , one can choose 

the points        and      so near to their respective corners, that the arcs of   from 

     to       and from          to        do not intersect  (          ). Then the 

previous choice of   will also satisfy ii),                                                     QED. 

 

We shall assume that   is such that Lemma 1 holds. This requirement and new ones will 

be satisfied with a smaller  . We shall keep track of the parameter  , the “width” of   
 , 

as soon as changes are produced. If   is a curved polygon with boundary   and   

     is small enough we have the following Propositions together with the preceding 

results. 
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PROPOSITION 2.                 
  | |             and   is uniquely 

determined. Moreover, if     ,         , then |   | |   ̂|   . 

PROOF. Suppose that    . If                     then the distance is realized 

at a point         and             is orthogonal to   . Thus,              . 

From                         and Lemma 1, §4, we obtain        ,   

QED. 

PROPOSITION 3. For      it holds that      . 

It remains to prove that      . But this follows from Proposition 2. 

PROPOSITION 4. In case of a proper curved polygon  ,  

                       ̃ 
     {                 }      . 

PROOF. Since   
      , we have    ̃ 

    . If      and           |   | with 

    there are two possibilities: 1)   is an interior point of some    or 2)    is a corner 

of  , say          . In case 1), as in Prop. 3,     
 . Therefore,    ̃ 

 . In case 2), 

the interior angle at   must be   , in contradiction with the hypothesis that   is a 

proper curved polygon, so this case cannot occur,                                                   QED.  

 

4.2. The curve  . Let us fix our attention on the corner            ̅     

   ̅  .  

Inside a neighborhood      , the curves, defined by the functions of      [   ], 

                                                  and              , 

intersect in only one point       for any    [   ] whenever     are sufficiently small 

and    . This point verifies                                   .  

If  ̃   
   ̃ 

    then         for a certain   .  

Now, the last argument in the proof of Lemma 1 §4.1 can be used again; from (†), §4.1, 

and the fact that            
    
→   ̇     , it is possible to show that if   and   are 

sufficiently small then   [   ]   ̃   
   ̃ 

 . Besides,             , is a rectifiable 

Jordan arc since |           |   |     |, (cf. §5.1. We return to the properties of 

the curve   in Appendix 1 §7.) Then, its plane Lebesgue measure is zero.  

As a matter of fact,                . Let us define   as a positive number less than 

the minimum of the previous   and          | |     .  

 

4.3. The points  ̂     
 . If   is chosen as in Lemma 1 §4.1 then ii) of that lemma 

implies that  ̂   ̅ for    ̃ 
 . 
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4.4. Minkowski neighborhoods. Suppose   {            } is a Jordan arc with 

 ̇   ,  ̈    continuous, | ̇   |   , | ̈   |     in      .  

Let         ̇      ̇      be the normal vector to   at     . Then there exists a 

    such that the map  

                   is a homeomorphism from [   ]         onto  

    ( [   ]        ) as we have seen in §4. If    {              }, then  

(9)                                                       . 

PROOF of (9). Since obviously       we get the inclusion  . To prove   observe 

that if      and             |       |   , then there are two possibilities. 

1)       ,   2)     is equal to   or  . 

In case 1)           is perpendicular to  , therefore                  . 

In case 2)                    ,              QED. 

 

Therefore,        
                       . 

NB. For a     we have   ,        
 . Therefore,        

 . Thus, we can always 

suppose that   is so small that for any  ,        
 . (Recall that we supposed that 

        ). 

 

4.5. |        |            
 . Given     

 , let   be a neighborhood of     ,   

the mid-point of the segment   ̂ (see Fig. 5 and NOTATION). Let us take        

and   and   such that for   a bounded interval around  ,   is a homeomorphism from 

         onto 

(1)                 (        )    ,  

(see (***) §3). After a translation and a rotation, the old coordinates       are 

transformed in such a way that in the new coordinates the equations of   , assuming that 

      , are of the form:  

(2)               {

      (           ) ̇     (           ) ̇    

       (           ) ̇     (           ) ̇    

 

and           ̂         .    is a positive number since   is in  .  

This system of coordinates is similar to the one used in §4.1 when proving inequality 

(1) except for the fact that now 0 is not a corner point but the regular point     ̂  ⁄ . 

Let us define as in §4.1:                , in a neighborhood of  . Then, the same 

reasoning that led to (1) §4.1 now yields the next Lemma. 
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LEMMA 1. |     |         
   whenever                  , where 

(3)                   {            ⁄ }    and          {             ⁄ }. 

Let us call       |   | |   ̂| ,   √  
    

 , (Fig.5). Since          we 

have 

                                     
      |     | 

    
  

  
 

 
       .  

It follows that      
  

  
 

 
          

 . Then, if |  |   ( √     )⁄ ,  

(4)                                       
    

    . 

That is,     √  and we have the following lemma. 

LEMMA 2. Let        , |     |   ( √     )⁄ ,          . Then, 

                           √ ⁄⁄   and  |        |            
 . 

NB. We used in this paragraph the same   as in the preceding Note because of (1) §5.1. 

 

5. On the implicit function theorem. Lemma 1 §4 is an illuminating result but it is 

difficult to think that a bound for the value of   could depend on  , that is, upon the 

auxiliary covering C. We shall get rid of this limitation. 

The implicit function theorem for       ,              ,      on an open 

neighborhood   of 0,            
  

  
   on  , says that there exist   and   such that 

        has on | |    a unique continuous solution        such that | |   . 

Moreover,             on | |    and   | |     is a neighborhood of    .  

This result can be rewritten in the following more precise way, (see Ważewski’s Th., 

[H] Ch. X). 

THEOREM 1. Let       ,   an open neighborhood of     and for    ,  

                . Let    ̅     {   | |   } and ‖
  

  
‖ be the norm as 

operator of the jacobian matrix on  .  

Assume that there exist constants      such that on  ,  

                                        ‖(
  

  
)
  

‖        ‖
  

  
‖.  

Then there exists an open set ℛ such that   

   

      ℛ         , where  

       is a homeomorphism from ℛ onto   

 

     . 
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PROOF. First, we observe that      . Let   be a non null vector,   real and 

       . A solution        of this equation should verify in the sense of Fréchet 

(1)   
  

  
    (

  

  
)
  

  .  

If we add the condition 

      , we have an initial 

value problem.  

Peano’s Theorem asserts that 

there exists a solution (may 

be not unique)          

defined on {   | |     | |}, 

with values in {   | |   },  |    |  ‖(
  

  
)
  

  ‖
 

 | |
   . But 

                                                            

verifies                    
  

  
 

  

  
 
  

  
 

  

  
 (

  

  
)
  

    .  

Then,       . Since       (      )        , it follows that     and we 

have  

(2)                                (      )    .  

Because of      and the implicit function theorem,        is locally the unique 

solution of        . Since          it follows that        is the unique solution of 

our differential equation.  

Thus,                                   
       

  
 (

  

  
)
  

  ,    | |     | |. 

If we replace   by       , then              satisfies the equation 

(3)                          (
  

  
)
  

                   if | |  
 

  | |
 .  

But in this interval, it holds that 
        

  
  

        

   
 (

  

  
)
  

            ,  

i.e.,         satisfies (3).  

Because of the unicity of the solution we have for | |  
 

  | |
 

(4)                                                    . 

Assume now that   is a versor. In this case        exists on | |  
 

 
 and 

                holds on | |  
 

  
. Then,                whenever     

 

 
.  
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Thus,                for     
 

 
 . 

Since                , we have                for     
 

 
 and an arbitrary 

versor  .  

Then, from (2) we get  

         (       )      

for | |  
 

 
 and | |   .  

From this we obtain  

             if | |     .  

Then, because of  

          
       

  
 (

  

  
)
  

, 

there we have    
       

  
  .  

Thus, if     

 

    then                   and        (    ). 

Using the implicit function theorem (or Brower’s theorem) we deduce that 

                                                  ℛ             

is a (simply connected) open set which by construction is included in   , as we have 

seen. Therefore, we have proved the  

PROPOSITION 1.        defines a bijective application from ℛ onto      and 

therefore a   -homeomorphism with inverse              . 
 

     is an open set that contains the compact set    ̅    ̅    and   ℛ̅   ̅   . If 

one starts from  ̅    one proves that   is a homeomorphism from ℛ̅ onto  ̅   . 

Applying the Proposition to the map        on  ̅   , we find an open set 

ℛ    

 

      such that        defines a homeomorphism from ℛ  onto 

 
(
 

 
)

 

  

       ℛ,                                                                        QED. 

 

5.1. Some more precise statements about the proof of Lemma 1 §4. To fix ideas we 

assume that | |   . We shall use the following corollary of the preceding theorem. 

THEOREM 0. Let   be an open plane set,    ̅    , and assume that there are two 

numbers      such that the homeomorphism   defned in §2,       , 
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                                 {
        (  )   

 
 ̇     

        (  )   
 
 ̇     

, 

verifies on  :    ‖
  

  
‖

  
,    ‖(

  

  
)
  

‖
  

. Then, there exists a region ℛ such that  

  

   

    ℛ       , where        is a homeomorphism from ℛ onto   

 

   .  

In our case a uniform upper bound     for ‖
  

  
‖

  
can be obtained from (1 ) of §2 in a 

certain cylindrical open set  ,     [    ], (the end points of   are identified in case 

| |   ). In fact, the norm of a matrix   |
      

      
| as an operator verifies  

‖ ‖   (∑ |   |
  

     )
  ⁄

. From (1  ) §2, it follows that if  

(1)                                   |  |                   

there exists (
  

  
)
  

 and there is a uniform upper bound    for ‖(
  

  
)
  

‖
  

 on 

  [    ]. But we shall use the following greater constants, 

             .   ‖
  

  
‖

  
    ‖(

  

  
)
  

‖
  

/,          ,         . 

    is a number such that for              it holds that 

(2)                               
 

 
|   |  |         |   |   |.  

In fact, 

LEMMA 1. 1) If      |
         

         
| is a   -homeomorphism from            

onto       ,  then |         |     ‖
  

  
‖

  
|   |  for      ,  

2)                     |   |   sup‖
  

  
‖

  
|         |, 
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3) If      |
         

         
| is the   -homeomorphism from            onto 

          defined by (1) §2 and (1) holds (i.e.,        ), then 

‖
  

  
‖

  
   |  || ̈    |,                                   ‖

  

  
‖

  
         ,  

‖
  

  
‖

  
      | ̈    |      | ̈    | ⁄ ,      ‖

  

  
‖

  
                   ⁄ . 

PROOF. 1)           ∫
            

  

 

 
  . The integrand is: 

|
      ⁄       ⁄

      ⁄       ⁄
| |

     

     
|  

  

  
                 . Therefore, taking norms 

we get 

           |         |  ∫    ‖
  

  
‖

  
|   |

 

 
      ‖

  

  
‖

  
|   |. 

2) Applying 1) to      and taking into account that the jacobian matrix of     is 

  

  
 (

  

  
)
  

, we get |   |   sup‖
  

  
‖

  
|         |. Hence,  

               (   ‖
  

  
‖

  
)
  

|   |  |         |     ‖
  

  
‖

  
|   |. 

3) The norm of a matrix   |
      

      
| as an operator verifies: 

                                              ‖ ‖   (∑ |   |
  

     )
  ⁄

  

Applying this to the jacobian matrices 
  

  
 |

 ̇        ( ̈     )   ̇     

 ̇        ( ̈     )  ̇     
| and  

 
  

  
 |

 ̇      ̇     

  ̇        ( ̈     )  ̇        ( ̈     )
|            ⁄ ,  

and using the fact that |     |  | ̈    |, one gets  

 ‖
  

  
‖

  

 

      ( ̇      ̈       ̇      ̈     )    
 | ̈    |

     

            
    . Therefore, these inequalities hold:  

(*)              ‖
  

  
‖

  
                  and similarly 

(**)            ‖
  

  
‖

  
 (             )            ⁄   

and 3) follows,      QED.  
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Let us define   
 

  
               . Then, we have   

       |  |                       and     
        

        
              . 

Using Theorem 0 with      we get that   maps homeomorphically   

   

      onto 

an open neighborhood of    , ℛ      

 

     . Then, it maps the square   inscribed 

in   

   

     , that is, the square                     with    
 

√    
, onto 

          ℛ      

 

 . 

Let   
  

 
. The disk       is such that the distance from any of its points to points 

outside   is greater than  .  

Then, for         and          ,             , we have 

(3)                    |         |  
|   |

 
 

 

 
      ( 

  

  
 

 

 √     
) . 

In particular, for         ,            . 
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Therefore, the disk of radius     centered at          verifies for        

 

     

and              that        ,             . 

Because of (3) and     we get  

(4)                         |         |  
 

 
 

 

 
. 

Then, |         |  
 

 
 and   

 

           .  

The square    inscribed in       
 of half side 

                                                  ̃  
 

√    
  

is mapped by   homeomorphically onto  ̃       .  

Because of (4), 

(5)         if            and              then |         |  
 

 
 .  

Because of       , 

(6)                                                            .  

Then we have, 

(7)                    |         |                             .  

We proved the  

THEOREM 1.  Assume that   is the square with center   and sides parallel to the axes 

of half side equal to    
 

√    
 and    a similar square with the same center and of 

half side  ̃  
 

        
 .  

If            and             , it holds that 

(8)                |         |   
 

 
  

 

 √     
             . 

 

6. The spectral Dirichlet series. We focus on the functions  

        ∑   
            ⁄ 

   ,        ,         and 

∫         
 

  ∑          ⁄ 
           (cf. §4.14 and §4.17 of BPII).  

The eigenvalues and the normalized eigenfunctions are those of the Dirichlet problem 

      , (cf. BPII, §4.4). We know that, (BPII, §4.14, §4.15 for           ) 

                            

                         |   |            ⁄              |   |⁄         ⁄  ,  
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where         ,        is a harmonic function and          is a  -harmonic 

function (a metaharmonic function
1
) such that      ̃          |   ̃|      if 

    ̃          . Using the fact
2
 that the Kelvin function of order 0, 

      ∫                 
 

 
                   ⁄       ⁄       , where 

     and the modified Bessel function       are entire functions in   ,        , 

(BPII, §4.15), we get
3
     |   |     

 

 |   |
    |   | , with   | |  

      . Therefore,  

                                     ⁄     |   |             ⁄⁄  . 

Hence, for    ,  

(1)                             

                                                             ⁄   

where  

(1’)                     |   |   ⁄   ,    for    ,    . 

Since       is a decreasing function, if                   , we have 

                                  |   |    (     ).  

Thus, by (1’) and the maximum principle for  -harmonic functions, (BPIII, p. 45), if 

   ̅ and     we have  

(2)                                      ⁄ . 

To estimate          for   observe that if          then, because of (2), (cf. 

BPII, §4.15, p. 42), 

(3)                            
  

 
   

  

    . 

Then, we have  

LEMMA 1.                 
  

 
        for             . 

Thus, to estimate            on the whole of   it will suffice to estimate          

on    = the interior  -neighborhood of  . 

 

 

                                                           
1
 Informe Técnico Interno n° 79, INMABB, UNS-CONICET, 2002, Ch. 4-5. 

2
  Magnus, W., Oberhettinger, F., Formulas and Theorems for the Special Functions of Mathematical Physics, 1954, p. 27. 

3
 Schwartz, Laurent, Théorie des distributions, II, 1951, formula (VII, 10:15). 
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6.1. MAIN RESULT. Our objective is to prove Th. 1 of §1 for curved polygons. For 

this we use in an essential way the next Lemma 1 that we shall prove in §6.4, (cf. BPII, 

§4.15). 

LEMMA 1. Let       ∫            
 

 dx.      〈 〉  √   is measurable and 

bounded on any closed subinterval of       and if     then  

(4)                           
〈 〉

  
      (

      

  ) ,              . 

From (1) §6 and what we have said above we deduce that for      it holds that 

(5)        ∫           
 

  
| |

  
               ∑

 

        
 
  , 

where   ∫          
            | |

   
  is a finite constant. 

In fact, ∫ |      |  
 

 ∫         
 

  , (cf. BPII, Th. 2 §4.13 and Th. 1 §4.19). 

NOTATION. We wrote in (5)   in place of   to indicate that it may take complex 

values:    ,        . We shall write       instead of   ∑
 

        
 
 . 

Then, for     and assuming (4), we obtain from (5), 

(5 )                          
| |

  
       *

〈 〉

 
    ⁄              +. 

THEOREM 1. If   is a curved polygon and        then 

(6)           ∑   
    

 ∫         
 

 
 

| |

  

 

   
 

〈 〉

  
 

 

   
 

     ,  

where      is holomorphic on       ,       {       }   the counting function 

of the eigenvalues       of the Dirichlet problem and   is such that      

          . 

PROOF. (Cf. [BPII]   4.20-21).       ∑
 

        
 
  is a meromorphic function on 

the plane with simple poles at the points   , a non-decreasing family.  

Let    | |   ⁄ ,     〈 〉  ⁄ ,                     . Then, in view of (5 ), 

(7)                                                       . 

Because of Lemma 1, we have 

(  )          is a measurable bounded function on        ⁄  , for all    , such that 

           
    

  
    

 

 
    for any    . 

Let   be the region at the left of the contour   shown in Fig. 2. We have, for    , 

(8)     
 

   
∫

    

     
  

   
∫ ∑

    

        
   

  

   
∑ ∫

    

         
   

    
   

∑   
   

 . 
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In fact, let   | |. Because of     and H. Weyl’s theorem        we have 

∑∫ |
    

        
|     . This allows to prove the second equality in (8).  

For the last equality observe that the region   is the limit, as     , of the region 

contained between the circumferences of radii   and    except for the negative real 

axis, (see Fig. 1). 

Since    , the integral over the circumference of radius   tends to zero for     

and the last equality in (8) follows from Cauchy’s theorem of residues, (cf. BPII, §4.18).  

Let      {  | |   } and             , (Fig. 2), with    going from    to 

   where        and with    going from    to    where        . 

Then we get (arguing as in BPII, §4.18): 

 (9)     ∑   
   

 

   
∫     
 

           
 
 ,               

 

   
∫     
  

     , 

(10)     
 

   
∫     
 

      
 

   
* ∫     

   
      ∫     

  
     +   

                       
 

   
∫      

 

 
   (          )   (      )   

                        
     

 
∫           

 

 
  

                        
     

 
∫ (           

 

 )       
 

 
( 

     

 
) ∫          

 

 
. 

Because of (7’), the last term defines a holomorphic function       on       . Thus,  

(11)   ∑   
    

     

 
 
   ∫ (                )      [           ]

 

 
      ,   

where the square brackets define a holomorphic function on       . 

The integral in (11) is equal to 

         ∫ (             ⁄   )       
 

 
             

 

 
            .  

Thus, from 
      

      
         [ ], we obtain on {   }, 

(12)           
      

 
,             

 

 
            -   

 

   
 

  ⁄

(  
 

 
)
      , 

where       is holomorphic on       . 

Thus, on        it holds that 

(13)   ∑   
   

   
 

   
 

  ⁄

  
 

 

     ,                  [           ].   

     is a holomorphic function on        and (6) follows, QED.   

THEOREM 2. The residues and the function   are uniquely determined. 

PROOF. In fact, 
 

   
 

 

  
 

 

        on        implies           . 
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That is, if (4) of Lemma 1 holds then we have proved that Theorems 1 and 2 are valid 

for convex polygons. For | |    we would have proved Theorem 1 of §1. 

 

6.2. About formula (4) §6.1 for   a curved polygon:  

                            ∫              
〈 〉

  
  (

      

  
)

 
. 

Because of Prop. 4 §4.1 and (3) §6, we have for        , (  as in §4.5), 

(14)       ∫             
 

 ∫             
  

 ∫              
    

 

                ∫                  | |      ⁄       ⁄
  ̃ 

 ,  

where |    |   ,  ̃ 
  {    

                          }.  

If    ∑ ∫              ∫             
  ̃ 

  ̃ 
    then     and 

(14’)             ∑ ∫             
 ̃ 
       | |       ⁄       ⁄ .  

We know from §4.2 that if   is small enough then    . In consequence, we have, 

(15)                   ∑ ∫             
 ̃ 
    (     ⁄ ),               . 

The function         . We wish that     |   ̂|   ⁄  replaces            in (15). 

We will consider, for this purpose, the difference, 

(16)                               |   ̂|   ⁄ ,             ̃ 
 ,    . 

Observe that, whenever   is small enough, for each    ̃ 
 , R is  -harmonic in   as a 

function of   since  ̂  ̅  ̅, (cf. §4.3).  

That is,           ,    , (cf. (2) and Th. 1, [BPII], §4.15). 

If     then            
 

  
    |   |  and 

(17)                  {    |   |      | ̂   | }   ⁄ . 

For   large enough we have the next lemma where 

                             ,   {  }         ,                 . 

LEMMA 1. 1) If   is sufficiently small and    ̃ 
   

 {             },    , then 

there exists              such that  

(18)             |          |       (  ⁄            ). 

  is a positive integer   . In particular, if | |   , then (18) holds for    
 

      . 
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2) If | |    and    ̃ 
   

       , then (18) holds except possibly for            . 

Similarly, if    ̃ 
   

       , then (18) holds with a certain    , except possibly for 

           . 

Then, the exceptional pairs {   } where (18) does not hold, if any, are contained in the 

sets: 

(19)           ̃ 
   

        and            ,         | |,  

(19’)          ̃ 
   

        and            ,         | |.   

PROOF. If   ̂             represents the symmetric point of   with respect to the 

first coordinate axis, (see Fig. 5,      | | , where the curve is   ), we have: 

|   ̂|  | ̂   |  and  ||   |  |   ̂||  |   ̂|   |     |.  

If |  |     then we obtain for  

                             (  (        ))     ̃ 
       ,  

(cf. §5.1 and Fig. 7,               ), 

(20)           |    |   |      |   ̂| |    |     ||      ̃ |, 

where  ̃ is a number between |   | and |   ̂|.  

By Lemma 2, §4.5, we have    √ ⁄  and therefore 

                   ̃   √ ⁄             √ ⁄ . 

Since  

(20’)                 | |                        | |,  

we also have 

                    ̃   √ ⁄             √ ⁄  . 

The right-hand side of (20) is equal to, (   ), 

(20 )     
 |     |

 ̄
|  ̃      ̃ |   

 |     |

 ̄
   

   ̄  ⁄     √ 
|     |

√  
    

 
    ̄  ⁄ , 

because of    
        

     for    , (   a constant, cf. [BPII]§4.15). 

Because of Lemma 2, §4.5, the last term is not greater than        
 

      ,  

    √     
  
 

√  
    

 
 
 
  

 √    |  | 
     √          ⁄    

                                                                                           .  

Thus,        (
 

 
                 ) for       . 
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If      ̅        then |   |, |   ̂|    ,           , because of (8) 

Th. 1, §5.2. In this case, the argument to obtain 

                              |          |        (  ⁄   
   

    

   )  

is similar to the one we use in next point b) since we can write  

                |          |      |   |      | ̂   |          . 

We obtained, 

a) For         ̃ 
 , a constant        [                    , we have 

(21)             |          |             (
 

 
          ).  

NB. In particular, when      we get (18) 

for         , with           . 

The cases a)-f) are schematically depicted in 

the figures at the left.  

Let us prove part 2). 

b) If        ,         ̃ 
 , then 

from |   |, |   ̂|    if    , (§4.1), 

and 

       |          |   

     |   |      | ̂   |  

                 , 

we obtain 

 |          |                                  , 

 |          |  
 

 
(    

  

 ) (
 

 
  (

  

 
))   (

 

 
). Then,  

(22)                  |          |        (
 

 
   

     

 ) .  

c) For    ̃ 
   

 we have    ̂    
   

. 

If                or                then, 

            |   | | ̂   |      .  

In fact, |   |                             . 

 

Now we can argue as in b) obtaining  

 (23)       |          |        (
 

 
   

     

 ). 
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d) If    ̃ 
   

       ,         then |   |    and 

| ̂   |  |   |  | ̂   |    
  

 
    .  

Therefore,  

(24)      |          |   

                           
  

 
        (

 

 
   

     

 ). 

e) If    ̃ 
   

       ,         then, as in d), |   |    and  

                   | ̂   |  |   |  | ̂   |    
  

 
    .  

Therefore, for         , we obtain 

(24’)       |          |      
  

 
        (

 

 
   

     

 ). 

f) From c), d) and e) it is clear that the sets {           ̃ 

 

                    } 

and 

{         ̃ 

 

                    } contain all the cases that 

were not considered in a)-e).  

Lemma 1 follows after collecting results,                        QED 

 

Now we shall find a bound for            in the exceptional cases, where the proof of 

(18) in Lemma 1 does not work.  

Without loss of generality we consider the case 

(25)                                         ̃ 

 

        ,            . 

In this case, for   small enough, we have 

LEMMA 2.   |          |  |    |   |      | ̂   | |    

                                                                                          (        ) 
   , 

where                      and             , (cf. (2) §5.1). 

PROOF. We shall use the homeomorphism   treated extensively in §5, applied to   , in 

a neighborhood of the corner     , (see Fig. 8). We suppose   is so small that 

Theorem 0 §5.1 applies to                   ,       . This is possible because 

of     §4.1. If    ̃ 
   

        and        then by the construction of  ,  ̂     ̂ . 
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Since the angle of the curve   at       is less than  , if   is small enough, the arc 

          

 

does not cross    and so, if       , we have |   |  | ̂  |. Using formula (2) §5 

we get |   |   |   |   | ̂  |    | ̂   |.  

Then, 

(26)                          |   |    | ̂   |. 

But |    |   |      | ̂   | |     (    |   |      | ̂   | ).  

Since    is a decreasing function, using (26), 

|    |   |      | ̂   | |     (  (        )              
  )    

              
  ,                              QED.  

COROLLARY 1. Let     and 1   | |.  

We have, for a certain constant         [    : 

a) for    ̃ 
   

   {              },   |          |       (
 

 
   

     

 ), 

b) for    ̃ 
   

       ,   |          |       (
 

 
   

     

 )       
          . 

In fact, b) follows from Lemmas 1 and 2.  

Since                           |   ̂|   ⁄  is a  -harmonic function of 

   , the maximum-minimum principle for these meta-harmonic functions implies that 

the next bounds hold, for    ,        [    , 1   | |,  

|          |       (
 

 
   

     

 ),         ̃ 
   

   {              },     (| |     ) 

|          |       (
 

 
   

     

 )       
          ,        ̃ 

   
       . 

In particular, for     we get 
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THEOREM 1. 1) |               |   ̂|   ⁄ |       (  ⁄            ), 

for    ̃ 
   

   {              },  

2) |               |   ̂|   ⁄ |       (  ⁄     
    

 )        
          ,  

for    ̃ 

 

        ,  

3) If | |    then 1) is valid for     . 

Observe that all     

 

 were considered whenever   is sufficiently small. And only 

once, except for those of a set of measure zero, (cf.§4.2), that were considered twice.  

Next, we shall use the bounds of Theorem 1 writing   instead of    . 

 

6.3. A bound for ∫           
  

  .  

The absolute value of the integral is not greater than 

(27)      ∫ |          |   
  

 ∫      (  ⁄     
    

 )    
  

  

               ∑∫      
                  ̃ 

      ∑∫      
                   ̃ 

   .  

Using Steiner’s theorem,  |{          }|   〈 〉     , we have  

∫ |          |    
  

∫    
     

  {      }    ∫
 

 
 {      }     

 
  

  

         *∑ (∫      
                  ̃ 

      ∫      
                   ̃ 

   ) +    

  | |  
  

  
 

 
 |{         }|  [ ]   ,| |  

  

  
 

 
 〈 〉     -  [∑   ].  

Taking   
 

 
     ,    , we get for       ,  

(28)          ∫ |          |     ,
| |

  
 

〈 〉 

  
      

  

  
     -  [∑   ]

  
   

If | |   , the square brackets contain the sum of  | | integrals like 

                           ∫      
                  ̃ 

     .  

But, for            ̃ 
 ,               

       

|      |
      

 

 
 , (see Appendix 1). Then, 

given   such that          
 

 
 , we can choose   so small that for            ̃ 

 , 

(29)                                      
       

| |
   .  
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Therefore,  

(30)       ∫      
                ∫      

   | |
        

                                                                     ∫   (    
    )    

 

 
       . 

From (28) and (30) we get 

                   ∫ |          |     ,
| |

  
 

〈 〉 

  
      

  

  
     -  

  | |

    
  

In consequence, ∫ |          |  
  

  (
     

  
). Then, for   large enough we obtain 

the first of the next inequalities for curved polygons. The second one follows from 

(3) §6.  

THEOREM 1. For   a constant and    , we have 

(31)     ∫ |          |     
      

    
,    

(32)     ∫ |          |
    

   | |  ( 
 

 
)   

  

 .  

(32) implies that ∫ | |  
    

       
  

     , as we have already observed. 

 

6.4. Last steps of the proof of Lemma 1, §6.1. Next, we evaluate an approximation of 

∫             
  

 for   large enough.  

PROPOSITION 1.   
 

  
∫     |   ̂| 
  
    

 

  
〈  〉      

 

  
. 

PROOF.   ∫
    |   ̂| 

    
         

 

  
∫   

 ∫   (    )[   ( 
 
) 

 
]   

 

 

 

〈  〉

 
   

                                 
 

  
∫ ,

 

  
∫         

     

     
∫          

   

 

   

 
-   

 

〈  〉

 
  

Since       ∫
    

√   √   
   

 

 
 and     , the last term is equal to 

 

  
∫ ,

 

  
∫         

 

  
∫         

 

   

 

 
-   

 

〈  〉

 
        ⁄   

                    
 

  
∫ ,

 

  
∫        

 

 
          ⁄ -   

 
        ⁄  

〈  〉

 
  

  (because of ∫          
 

 

 

 
 and for    )   

 ∫
 

  
  

 
        

〈  〉

 
  

 
〈  〉

  
       ,                                                                                       QED 

PROPOSITION 2.  i) For     
   ̃ 

  we have  

(33)                            |   ̂|    |      |,     . 
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ii)   ∑ ∫     |   ̂|    
 ̃ 
 

| |
    ∑ ∫     |   ̂|    

  
 

| |
        . 

PROOF. i) can be proved as (29) §6.3, (cf. App. 1). 

ii) In view of (33), ∫     |   ̂| 
 ̃ 
    ∫     |   ̂| 

  
       with 

(34)     |  |   ∫       | |    | |  
     ∫      | |    | |  

       ,     QED. 

 

Thus, we have for    , (cf. Prop. 4, §4.1 and (32)), 

(35)               ∫              
 

  

 ∫              
  

 ∫              
      

  

 ∫              
  ̃ 

  ∫              
      

 (14’) §6.2    

 ∑ ∫              
 ̃ 
    (      )   (16) §6.2   

 ∑ ∫ ,           
    |   ̂| 

  
-   

 ̃ 
    (      )   §4.2   

 ∫              
  ̃ 

    ∑ ∫
    |   ̂| 

  
   

 ̃ 
  

 (      )    

 ∫              
  

 ∑ ∫
    |   ̂| 

  
    (      )  

 ̃ 
   

(31)   

 ∑ ∫
    |   ̂| 

  
    (

     

  
)   (      )  

 ̃ 
   ii) Prop. 2, 

§6.4    

 
 

  
∑ ∫     |   ̂|      (

 

  
)   (

     

  
)   

  
  Prop.1, 

§6.4   

 
〈 〉

  
   

      

  
 .  

We obtained the 

PROPOSITION 3. If    
 
   then there exists a constant   independent of   such 

that |     |  |
〈 〉

  
      |

  

          .  

 

Therefore, the proof of Lemma 1, §6.1, and those of Theorems 1, 2, §6.1, are finally 

accomplished. 

 



 

30 
 

7. APPENDIX 1. PROPOSITION. Let   be the measure of the interior angle at     , 

      
̂   Then,   {    

                         } is a    curve verifying that the 

measure of the angle at the vertex      between   and      is equal to    .  

Let us verify this assertion using an implicit function theorem. 

(1)       {                            } 

where {        } is the curve    and {        } is the curve      and 

              .  

Here,       (  ̇      ̇    ),       (  ̇      ̇    ).  

The equation (1) can be written as  

(2)     {
                 ̇             ̇      

                 ̇             ̇      
.  

Then, 

(3)     
      

      
 |

 ̇       ̈      ̇       ̈    

 ̇       ̈      ̇       ̈    
|    

                    (  ̇     ̇      ̇     ̇    )   [ ],  

where  

                  ̇     ̇      ̇     ̇                         

and [ ]       because of 

(4)     [ ]   ̈     ̇      ̈     ̇      ̇     ̈      ̇     ̈       

                                                       ( ̈     ̈      ̈     ̈    ).  

Applying Schwarz’s inequality, we obtain 

(5)           [ ]  | ̈   |  | ̈   |   | ̈   || ̈   |                   .  

Thus 
      

      
          and   and   are    functions of   in a small neighborhood of 

    , ([F]).  

We can assume without loss of generality that   ̇      ̇           . Then,  

              ̇                  ,                    .  

From (1) we see that the equation of   is       (    )     (    ) and we have, if 

       , 

(6)              {

         

  
  ̇    

  

  
     ̇      ̇    

  

  
     ̇      

         

  
  ̇    

  

  
     ̇      ̇    

  

  
     ̇      

. 

That is, {
 ̇    

  

  
     ̇     

  

  
     

 ̇    
  

  
     ̇        

. Equivalently, 
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(7)     {
     

  

  
         

  

  
     

     
  

  
            

                  

(8)          
  

  
     

      

    
  

      

      
,         

  

  
        

      

      
      

      

      
. 

But, 

 
  

  
|
   

  ̇   
  

  
          

      

      
                          

             
 

        
(    

 

 
    

 

 
).  

In consequence, the measure of the angle       
̂  is  

 

 
 ,                                        QED. 

8. Appendix 2. In this paragraph, we consider regions obtained as an increasing limit of 

sequences of special regions.  

Definition 0. We will say that a region   has property   if there exists a positive 

constant   such that its family of eigenvalues       of the Dirichlet problem verifies 

(1)      ∑   
    

 
| |

  

 

   
 

 

  
 

 

   
 

     , where      is holomorphic on       . 

Curved polygons    with               . The problem is:  

Does the property   remain valid under limits of sequences of increasing regions that 

have this property?  

Definition 1. A region   will be called a feasible region if it is the increasing limit of a 

feasible sequence S of regions: 

  {  },     ,        ,    a curved polygon, such that       〈  〉         .  

Since by definition a region is an open bounded connected set we have | |  

    |  |      |  |   .  

Definition 2. For S a feasible sequence,                       | ̈    |. 

Example. An oval is a plane convex body, i.e., the closure of a convex region. It is possible to construct a 

rectangle   consisting of support lines, that is, a rectangle circumscribed about the oval. Around any 

corner of   the contour of the oval is a curve that, except for some segments on the sides, can be 

described as a convex monotone function. Then  , the interior of the oval, is such that    is a rectifiable 

curve and it is the increasing limit of a set S of inscribed convex polygonal regions     ,        . 

The boundary   of   verifies 〈 
 
〉  〈 〉. Thus, the oval   is a feasible region that admits a feasible 

sequence   such that       ,      〈  〉. 

Feasible sequences. Assume   is a feasible region. We will use the following assertions 

(see, for example, [BPII] Th. 3, Appendix part II; Th. 7, §4.1; Ths. 1 and 3, §4.3; Th. 1, 

§4.4; Th. 1, §4.8. Cf. also [BP III] Th. 3 i) §6.1.1.) 

1)  For each   it holds that         if     and that             . 
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2)  For the regions    and   the variational and classical eigenvalues and eigenfunctions 

coincide. 

3)  For each  ,            as     but in such a way that ∑       
   

   .  

4) The Green functions verify:    
   , ‖   

‖
 

 
 ∑      

   and 

     ‖  ‖ 
  ∑     

  .  

1)-4) imply that 

(2)                           ‖   
‖
 

 
 ‖  ‖ 

     and    (
 

      
)
 

 (
 

     
)
 

. 

Therefore, we get the 

PROPOSITION 1. If    , it holds for each  , 

(3)                                . 

Then, for     , ∑      
   ∑      

    , since         , (H. Weyl’s theorem, 

[BPII], Th. 2. §4.10). In consequence, we obtain the 

PROPOSITION 2. The following limit holds almost uniformly on       , 

        : 

(4)             ∑       
   

   
→    

   ∑      
   

   . 

In fact, for fixed  , ∑       
     

 ∑      
    

    uniformly on compact sets of 

      .  

For   sufficiently large we have for certain    , 

   |∑       
     

   ∑      
    

   |   ∑      
   

     ∑      
       

       

for    ,  QED. 

Therefore,       (∑
 

  
     

 
   )  

|  |

   
 is almost uniformly convergent on        to 

     (∑
 

  
    

 
   )  

| |

   
. Because of Pleijel’s theorem,  

〈  〉

  (  
 

 
)
       is almost 

uniformly convergent on        to      where       are holomorphic functions on 

      .  

In particular, {     } is an almost uniformly bounded family on {      }.  

THEOREM 1. Assume   is a feasible region and that {     } is an almost uniformly 

bounded family on {      }. Then, there is a number  , the “virtual length” of   , 

such that 〈  〉    and 

(5)     ∑   
      

| |

       
 

 

  (  
 

 
)
      

 ,          holomorphic on       . 
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PROOF. Let {   
} be a subsequence of the sequence {  }. Then, for each sequence 

   {  }, it holds on        that 

(6)     ∑   
  (   

)  
|   

|

       
  

〈   
〉

  (  
 

 
)
    

    
 ,     

 holomorphic on       , 

and there is a subsequence of   ,    {   }, such that ,〈    
〉- converges to a certain 

positive number   because of the definition of a feasible region.  

(If   is an oval it is possible to choose   in such a way that   〈 〉      〈  〉.)  

Because of the Stieltjes-Osgood Theorem, ([SZ]), ,    
   - converges through a 

subsequence of   ,    ,    
-, almost uniformly to       a holomorphic function on 

      :                          
     

     

   .  

(If a meromorphic function on        is of the form 
 

  
 

 

     ,   a constant and  (z) a 

holomorphic function on        , then   and   are uniquely determined. From this we know 

that   and   do not depend on the subsequences       chosen.)  

In consequence, the right-hand side of (6) converges almost uniformly to 

(7)                            
  

  (  
 

 
)
       on          .  

Therefore,  

    ∑   
  (  )

 
     

|  |

       
   

  

  (  
 

 
)
          almost uniformly on       .  

Then, on this half plane, 

(8)              
 

  (  
 

 
)
 ∑   

      
| |

       
 

 

  (  
 

 
)
      

   ,   

with      holomorphic on       ,                                                  QED. 

 

9. Appendix 3. If   is a curved polygon, then      ∑   
   

 , where {  
           

     } is the family of eigenvalues for the Dirichlet problem, is well defined on 

      . 

If        then    ̅      ̅̅ ̅̅ ̅̅  and      is real.  

The meromorphic function      
| |

  

 

   
 

〈 〉

  
 

 

   
 

 verifies these same properties. 

Since       on       , (     is holomorphic on       ),   also verifies 

   ̅      ̅̅ ̅̅ ̅̅  on       . It can be proved that its continuation   to        must 

have the same property.  
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But,                 on        is the analytic continuation of   to       . 

Then,      also verifies this property and      is a real number except for   
 

 
  . 

If we consider Neumann’s problem
4
 for he Laplacian in a plane Jordan region   with a 

   regular boundary   and if {                 } is the family of eigenvalues then 

on        it holds that       ∑
 

  
 

 
  

| |

  

 

   
 

〈 〉

  

 

  
 

 

                . 

Here, again,      is a holomorphic function on the right half plane and  

                 on       , is the analytic continuation of    to       . 

Because of the signs of the residues in   , from Darboux’s theorem it follows that there 

is an   (
 

 
  ) such that        . 
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SYMBOLS and DEFINITIONS 

 

    eigenvalue §6 

 ̃ 
  partial strip Def. 3, §4 

∫              
  

  §6.3 

         intervals §3 

         §6.2 

   interior strip,         
  Notation §4 

〈 〉  §1 

〈 〉  length §2 

   closed arc,    open arc,   
 ,      Notation §4 

    §6 

    open arc §3 

      §5 

|         |  |   |  §5 

 ̂  ̂, symmetric points Def. 2, §4 

    ̇   ̈   §2 

Curved polygon Def. 4, §3 

   §4, §4.1, NB §4.4, etc. 

Homeomorphism §4 

Irregular boundary point Def. 1, §3 

Local coordinates  §2 

Minkowski neighborhoods §4.4 

Positive side of    §4 

Proper cuved polygon Def. 3, §3 
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Regular boundary point Def. 1 §3 

Singular point Def. 2 §3 

Spectral Dirichlet series §6 

  
        

        
   jacobian matrix (1”) §2 

  | |  §1 

                 §6 

                 §6 

       §6.1, (15’) §6.2 

      strip §2 

       (4) §6.1 

      the counting function §6.1 

             ii) §4.1 

      §4.2 

  | |   §6 

            (6) §6.2, (18) §6.2 

            §5.1 

      map (1) §2 

Ważewski §5, 7 

 ( 
 
) curvature (1’) §2 

                  Def. 1, §4 

        §4.1 

           
not to be confused with      of §4.1 

Notation §6.1 

  def. Proof of Lemma 2, §6.2 

        §6.2 
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   ( 
 
)   

 
        §4 

   §5 

  | |  §3 

  {       | |}  §3 

| |     §8 

A comment §8.2 

Hypothesis (H) §8.1 

Family almost uniformly bounded Prop. 2, §8 

Generalization §8.1 

Ovals §8, (1) §8 

      (7) §6.1 

      (12) §6.1 

   
     §8 

 

  
∫    |   ̂|    
  
   §6.4 
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