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BOUNDARY EIGENVALUE PROBLEMS
Reinhard Mennicken and Manfred M8ller

O. INTRODUCTION

This paper deals with boundary eigenvalue problems for
first order systems of ordinary linear differential equations
and also for n-~th order ordinary linear differential equations.
The boundary conditions may contain interface conditions and also
an integral term. The coefficients of the differential equation
as well as of the boundary conditions are allowed to be holomor-
phically or polynomially dependent on the eigenvalue parameter.

The aim of this paper is to establish expansion theorems
for the above mentioned nonlinear eigenvalue problems..This will
be achieved in two steps: first by establishing the formal expan-
sion and secondly by proving the convergence of the formal expan-—
sion. Formal expansion is achieved by the application of a theo-
rem of Keldys [19], [20], cf. also Gohberg and Sigal [13]. The
theorem states that the principal parts of the inverse of a holo-
morphic Fredholm-valued operator function having non-empty resol-
vent set can be expressed by root functions (eigenvectors and as-
sociated vectors) of the given operator function itself and its
adjoint operator function. For this application the explicit form
of the adjoint boundary eigenvalue problem is needed. The proof
of the convergence of the formal expansion is based on criteria
for regularity. The proofs of these criteria are obtained by
making a careful analytic study of the Green's matrix or Green's
function associated with the given boundary eigenvalue problem.

Section 1 contains some basic functional analytic nota-
tions, definitions, and results. _

The sections 2-6 are concerned with boundary eigenvalue
problems of the form



y'(x) -A(x,\)y(x) =0 (x€ [a,bl),

: b
w(3) (My(a.) + [w(t,\)y(t)dt =0
1 ] a

(0.1)

ne1s8

J
whtre a=a,<a;<... <am==b and the coefficients are nxn-matri-
ces which are assumed to be sufficiently smooth in x and holo-
morphic in . In section 2 the corresponding boundary eigenvalue
oﬁérator functions are defined. Formal expansions are established
by applying the theorem of KeldyS mentioned above and a modifica-
tion of this theorem by the authors [28], cf. also Kaashoek [17].
Section 3 contains a theorem about the existence of a suitable
asymptotic fundamental matrix of the differential system in (0.1)
where we assume that the coefficient matrix A(x,A) has the
following A-asymptotic form

k .
(0.2) Ax,M) = £ A 9a,x)+o007KT (IA] ).

j==1
The proof of this statement is similar to that of Langer [24]; cf.
also Wasow [35] and Braaksma [6]. In view of the applications, we
are interested in smoothness conditions with respect to x which
are as weak as possible. In section 4 the Green's matrix for (0.1)
is introduced and the inverse of the operator function defined by
(0.1) is represented in terms of the Green's matrix. The authors
would like to point out that the boundary conditions are also
allowed to be inhomogeneous. In section 5 we state criteria for
‘regularity. We consider boundary eigenvalude problems of type (0.1)

whose differential equation has an asymptotic fundamental matrix
of the form

k
(0.3) C(x,A){Z A_KP[K](X)+O(1)}E(X,>\) (IA] =)

k=0

where C(x,A) is an nxn-matrix function which is a polynomial

in X and E(x,\A) is a diagonal matrix with entries of the form
exp{ARi(x)}. We prove a geometric regularity criterion which goes
back to Cole [8] for the special case that C(x,A) is the iden-

tity matrix. In section 6 we study boundary eigenvalue problems
of the form (0.1) with



(0.4) A(x,)) = A (%) +)\A1-(x)

where A1(x) is a diagonal matrix whose elements must fulfill
certain additional conditions. In contrast to Cole [8] we allow
A1(x) to have elements which are identical on [a,b] and we
also permit some of these elements to vanish identically on
[?,b]. Thus we do not assume that A1(x) is invertible on
[a,b]l. We prove the expandability of those vector functions hav-
ing certain smoothness properties and fulfilling boundary condi-
tions which, in contrast to the original boundary conditions in
(0.1), are independent of \A. Boundary conditions of this type
have already been introduced by Mennicken in [26].

The sections 7-12 are concerned with boundary eigen-
value problems for n-th order differential equations. In section

7 we study eigenvalue problems of the form

n .
Yo, (x, 00 (x) = 0 (x € [a,b]),
i=o0 *
(0.5) < - | n(aj) . (%)
r w3 o : + W(x,2) . ax
3=1 _a a I
n‘n”(aj) n (=) (4

where again a==a1-<a.2 <...~<am==b, the coefficients pi(x,k) are
sufficiently smooth in x and holomorphic in A, and the nxn-
matrices w(j)(x) and W(x,X) have the same properties as in
(0.1). Problems of this kind were first approached by Tamarkin
[34] with most valuable results. By y (x) :==(n(x),...,n(n—1)(x))t
the problem (0.5) is transformed to an eigenvalue problem of type
(0.1). The corresponding boundary eigenvalue operator functions
are related to each other and we state relationships between the
root functions of the operator functions belonging to (0.5) and
its adjoint problem on the one hand and the root functions of the
operator functions defined by the corresponding problem (0.1) and
its adjoint problem on the other hand. From these results we de-
duce a theorem which states that the principal part of the in-

verse of the operator function defined by (0.5) is representable



by root functions belonging to (0.5) and the corresponding adjoint
eigenvalue problem. This adjoint eigenvalue problem is defined in
the weak sense of distribution theory. Therefore we consi@er the
special case of two-point eigenvalue problems in section 8. We
state relationships between the classical adjoint eigenvalue pro-
blem and the adjoint problem defined in this weak sense. Frpm
these results we obtain a theorem which has been stated by Nai-
mark [29] without proof and concerns the principal part of the
Green's function belonging to a two-point eigenvalue problem. A
complete proof of this statement seems to have been open.

The sections 9-12 are devoted to boundary eigenvalue
problems of type (0.5) where the differential equation has the
special form

(0.6) Kn = 2Hnp =0

with K and H being differential operators of order n>1 and
O <p<n-1. Eigenvalue problems of this type for p=0 and A-in-
dependent boundary conditions have been studied by many authors,
cf. e.g. Naimark [29], Orazov [30], Kostyuchenko and Shkalikov
[21], Shkalikov [32], [33), Blosanskaja [5], Il'in [16]. Benedek,
Gliichal and Panzone [3] and Benedek and Panzone [{4] treated the
case of a special second order differential equation (n=2) with
A-dependent boundary conditions. The general case of (0.6) with
arbitrary order p has been studied by Eberhard and Freiling [9],
(101, [11], Freiling [12] and Heisecke [14], [15]. In this paper
we feprove the main part of their results by making use of the
generalization of Cole's regularity criterion, which we stated in
section 5. By the application of this criterion we omit the labor-
ious estimation of the Green's function. With the aid of our re-
sults from section 6 we are able to get rid of the assumption in
(12], [14] and [15] requiring that the underlying boundary eigen-
value problem has to be normal, i.e. the Green's function has
only simple poles. The expansion theorem in section 12 states the
expandability of functions which are sufficiently smooth and ful-
fill certain A-independent boundary conditions. In contrast to
Eberhard, Freiling and Heisecke we do not suppose that the func-



tions and their derivatives up to some order are zero at the
boundary points a and b. |

The authors finally point out that the general results
concerning the root functions and the inverse of a boundary
eigenvalue operator function also are applicable to more compli-
cated eigenvalue problems, such as general differential-boundary
systems as considered by Krall in a series of papers, cf. [22].

Part of the present work was done during the stay of
the first author at the Universities of Campinas (Brazil) and of
Bahia Blanca (Argentina) in 1982. These visits were conducted
according to the GMD-CNPg-agreement between Brazil and Germany,
and supported by the Deutsche Forschungsgemeinschaft (DFG) and by
the University of Bahia Blanca.

1. PRELIMINARIES

Let E and F be Banach spaces. L(E,F) denotes the
Banach space of all continuous linear operators on E to F. If
S€L(E,F), N(S) denotes its null-space and R(S) its range.
S€L(E,F) 1is calied a Fredholm operator if both its nullity
nul (S) :=dimN(S) and its deficiency def(S) :=codimR(S) are fi-
nite. ®(E,F) denotes the set of all Fredholm operators on E to
F. If S€E®(E,F), then ind(S) :=nul(S) -def(S) is called the
index of S.

E' and F' denote the dual Banach spaces of E or F
respectively and S* € L(F',E') the adjoint of SE€EL(E,F). We set

(y ®Vv) (W) :=<w,v>y (weR)

for y€E and vE€EF'. Note that y®vEL(F,E).

If U is an open subset of (€, H(U,E) denotes the set
of all holomorphic mappings defined on U with values in the
Banach space E.

Let. TEH(U,L(E,F)). po(T) :={X €U :T(x) is invertible}
is called the resolvent set of T, o(T) :=U~p (T) its spectrum
and op(T) :={X €U :T()) is not injective} its point spectrum
.or the set of eigenvalues of T. We set T—1(A) :==T(>\)—1 for
A€p(T) and T*(A) :=T(A)* for XEU. 4

In the following we assume u € U.



(1.1) DEFINITION. y € H(U,E) 1is called a root function
of T at u 4if y(u) #0 and (Ty)(u) =0. v(y) denotes the or-
der of the zero at y and is called the multipilicity of vy.

For i €N we set

(1.2) L, :={y(s) : y is a root function of T at u with
v(y) >i} u {0}.

Th\is set Li is a subspace of N{(T(uy)). From now on we assume

that dim N(T(p)) =r<e and that, for some s>0, Ls#{o} and

Ls+1 = {0}. The last condition is fulfilled if T_1 has a pole of

order s at yu. We define
(1.3) m, :=max{i€N:dimL, > j} (3=1,...,1)

and state that m, zmj+1.
(1.4) DEFINITION. A system {y1,...,yr} of root func-

tions of T at u is called a canonical system of root functions

(CSRF) if Y4 (n) ,...,yr(u) are linearly independent (and thus

form a basis of N(T(u)) and one of the eguivalent conditions

i) v(yj) =max{v(y) : vy .is a root function of T at u and
y (1) €span{y1(u),...,yj_1(u)}} (3=1,...,1),

1) v(yy) =my (3=1,...,1),

iii) v(yj) ij (J=1,...,xr)

is fulfilled.

A root function corresponds to a chain of an eigenvector
and associated vectors. A canonical system of root functions is
related to a canonical system of eigenvectors and associated vec-
tors. For more details see [28].

2. BOUNDARY EIGENVALUE OPERATOR FUNCTIONS

et n€N and -o<a<b<w, We consider the Sobolev
spaces
WP (a,b) i= (y €L (a,b) .y () €L (ab), 1<ig3)

(j EN, 1 <p<») where the derivative is the weak derivative in
the sense of distribution theory. w)'P(a,b) is a Banach space
with respect to the norm



Y13 P4, p) = iéoly(i) le(a,b) (yew?'P(a,p)),
cf. e.g. [1], Theorem 3.2. We write H.(a,b) instead of
Wj'z(a,b). H1(a,b) is continuously emgedded in Co([a,b]), cf.
e.g. [1].

For an arbitrary set G, Mn,m(G) denotes the set of all
nXm-matrices with entries in G. If m=n, we briefly write

Mn(G). Let AEZH(E,Mn(Lw(a,bD). We define
D o n
(2.1) T"(N)y :=y' -A(-,\)y (y € H, (a,b), x€)
where H?(a,b) is the n-fold product of H1(a,b). Let m>2,
a=a,<a,<...<a_=b, W(]
m

,<a, )EH((I,Mn((E)) (3=1,2,...,m) and
WGZH(G,Mn(L1(a,b))). We set

R ' m (3) b
(2.2) TN (M) y = T W (My(ay) + fw(g, )y (g)de
3=1 ] a
(yEH?(a,b), YEC) and
D R n
(2.3) T(A)y := (T (A)y,T (AN y) (yEIH1(a,b), xeg).

From [28] and [26] we kno~

(2.4) PROPOSITION. i) T € H(C,®(H}) (a,b),Ly(a,b)xC™)).
ii) indT(x) =0 (retg).
iii) If o (T) #@, then o(T) <s a discrete subset of ([, of(T) =
op(T), and 'T—1 18 a meromorphic function whose poles are the
etgenvalues of T.

The dual of H?(a,b) can be identified with

n e o n . o
H_1[a,b] : {vO VYV, EI?(R), supp(vO v1)<:[a,b]},

cf. [28], (4.2). The adjoint T* €H(@,L(Lg(a,b)XGn,HE1[a,b])) ‘of
T has the form

¢ moat ¢
T* (1) (u,d) = -u' =A (-, \)u+ ¥ w'J (Vas_ +W (-,1)d
j=1 J
(W€ Li(a,b), d€C”), where 8a; 1is the Dirac distribution with
support at aj and t denotes the transposition, cf. [28],



section 4.

Since
(2.5) T(\)y=f (ferle(a,b)xa“)

is a boundary value problem, we call T the boundary eigenvalue

operator function of (2.5). We say that
(2.6) T* (1) (u,d) =h (heH” [a,bl)

is the adjoint "boundary eigenvalue problem" of (2.5).

From now on we assume that p(T) #@. An immediate con-
sequence of a theorem of Keldys, cf. e.g. [27], (2.1), is the
following '

(2.?) THEOREM. Let u€o(T) and {y1,...,yr} be a
CSRF of T at .

Then there are polynomials vj :G-aLg(a,b)x ¢t of
degree <mj such that

D:=T |-

j=1
18 holomorphic at wu. The vy are uniquely determined by the

system {y1,...,yr}. {V1/""vr} Zs a CSRF of T* at u, v(vj)

x -~
.~ Jv. .
L (e=u) y]®vJ

=n5, and the biorthogonal relationships

1 at
(2.8) -TT£;—<nih,vj>(u) = éijémi-h,l
(1 fhgmi; Oflfmj-h i,3=1,.¢.,1)
hold where Nih :==(-—u)_hTyi and < , > 18 the canonical bili-

near form on Lg(a,b) x ¢,

The Theorem (2.10) in [28] leads to the following inte-
resting modification of the foregoing theorem.

(2.9) THEOREM. Let k, 2k, 2.2k be positive natu-
ral numbers. Assume that w€o(T). Let Yqre-rY, be root func-
tions of T at u and VyreesrVy be root functions of T* at
u. Assume that v(yj) Zl{j and v(vj) zlcj for j€{1,...,r}. Set

-kj . , ,
N := («=yu) lTyi and suppose that the biorthogonal relationships



1
j_ll——d:—l<n.lv.>(l1) =6
T da

iV ijéol (Oflfkj-‘l; i,j=1,...,1)

are fulfilled.
Then {y1,...,yr} 28 a CSRF of T at y, {v1,...,vr}

28 a CSRF of T* at 1y, \)(yj)=\)(vj)=kj (i=1,...,r) and
r
D :=T 1. )N ("u)_ka.®v.
3=1 J J

18 holomorphic at u.

Let YEH((I,Mn(W1’°°(a,b))) be a fundamental matrix of
TDy=O, cf. e.g. [28], section 4. We set

M(A) :=TR(A)Y(+,2)

and call it the characteristic matrix function of (2.5). Obviou’:s-

ly, M€H(¢,Mn(ﬂl)) and o(M) =o(T). In [28] the authors proved the
(2.10) THEOREM. Let u€o(M) =0(T). Let {C1,...,cr}

be a CSRF of M at w and {dy,...,d.} be a CSRF of M* =Mt

at u. Suppose that the biorthogonal relationships

at

(2.11)
art

1 -m; L

'IT <(' U) lMCildj>(U) _613 601

(Oglfmj—h i,i=1,...,r) hold where m, 18 the multiplicity
of - We define

y; (0 :=Y(-,2)c; (A) (i=1,...,r; 2r€0)
and’

- -1yl e (3 *
ui(A)(x) = Y (x,A) {j§1Y (aj,A)W (}‘)X(aj,b) (x)

X
+IYt(a,x)wt(a,x)da}di(x)
a

(i=1,...,r; A€C). We set

vy = (ui,di) (i=1,...,r).

Then {y1,...,yr} 28 a CSRF of T at u, {V1,...,vr}



is a CSRF of T* at wu, the biorthogonal relationships
at

1
(2.12) -—
1! d>‘l

<(-—u)_miTyi,vj>(u) = 6ij601

(Oglgmj—T; i,j=1,...,xr) hold, and

-

j

g Rt

—m-
.- Jv. .
1( u) Y:,®VJ

18 holomorphic at u.

Kaashoek [17] proved that T 1is globally equivalent to

the canonical Lg(a,b)—extension of M if T corresponds to a

two-point boundary value problem (m=2, W=0).

3. ASYMPTOTIC FUNDAMENTAL MATRICES FOR FIRST ORDER

SYSTEMS
In this section we assume that

(3.1) A(-,2) = ¥ 13a j+x'k'1Ak(-,x)

j=-1

where k>0, A,

that A1 has the diagonal form

° 1
A1= A.l (0]
0] .
* 1
Ay
where
1 1
A =1 In, (v=0,...,1), L n, =n,
v=0
and for v,u=0,...,1
- = - iy
rv(x) ru(x) Irv(x) ru(x)le Vi,
-1
Irv—rul GLm(a,b) (v # u)

with some (pvu €ER.

10

eM (W '7(a,b)), A_jeM (W (a,b)) (5=0,..
Ak(-,)\)EMn(Lw(a,b)) is bounded in Mn(Lw(a,b)) as A -,

<1 k),

Assume



We set

X

R\)(X) :=Ir\)(£)d€ (v=0,...,1; x€ [alb])vr
a

Ev(x,)\) :=exp(>\Rv(x))Inv (v=0,...,1),
Eo(x,)\)

E(X,)\) = E‘](xl)\) O

o ..
El(x,A)

We shall often deal with functions having a special
asymptotic behaviour when the parameter A tends to infinity.
For this we introduce some notations.

Let i,j€N and let | | be a fixed norm on Mi’j(ﬂi).
Let f£f()) GMi'j(E) where A €Uc(, and let g:U-T. We write

£(x) =0(g(Ar))
if there is a C3>0 such that |£(})]| <Clg(x)l for A€U, and

£(2) =0(g(N))

1

if 1f£(M)1lg(A)]”'»20 as A-w, Let a€M (C). We write

i,]
£(x) =[al if f(r) —a = o0(1).
Now let 1<p<e and h€M, j(]Z.p(a,b)). Ihlp denotes
. r
the Lp(a,b)-norm of the function |h(.)| where the norm on

Mi,j((t) is as above. Let £(-,1) €M, j(Lp(a,b)) where r€UCcC,
J— r
and let g:U-(0. We write

£(., = .y = i .. ’
(«,2) {O(Q(X))}p or £(-,2)=0(g(2)) in Ml,J(Lp(a b))

if there is a C>0 such that lf(-,A)ngClg(A)l for AEU,
and

Ay ={0(g(1)} C )= in M, . |
£(,M)=0(g(M)) 1 or £(-,))=0(g(M) in M; (L (a,b))

£ 1£G,11g017150 as Ao,

11



Now let hEMi'j(Lp(a,b)). We write
f(',>\)=[h]p if f(-,)\)-h={0(1)}p-

For the matrices A. and the matrices P[r] defined

below we form the block matrices

A.=:(A. )l _ and P[r]=:(P[r])l B
J Jevu/v,u=0 vp Jv,u=0

according to the block structure of A.‘.

(3.2) THEOREM. A. There are PLY] EMn(Wk+1_r’°°(a,b))

(0<r<k) such that

(3.3) P[O]A1 —ATP[O] = o, pl%(aq) =1,
, T o
(3.4) - ptxl'_ 5 A_jp[r 3] +P[r+1]A1 —A1P[r+1] =0 (r=0,..,k=-1),
j=0
1 k 1 .
(3.5) plkl' _ 4 plkl _ &~ a plkl L v 5 5 . plk-3l
vV O,vv vy q=0 O,vg gv j=1 q=0 -J,vg gv
g#v

(v=0,...,1).
B. For any P[r] €Mn(Wk+1_r’°°(a,b)) (O<r<k) fulfilling (3.3),
(3.4), and (3.5) there are vy >0 and Bk(-,A)EMn(W1’°°(a,b))
(xeC, Ixl >y) such that
Bk(-,)\)=o(1) in Mn(Lco(a,b)) as A oo,

B, (*,1) =0(r(}r)) <n M (L (a,b))

where
1 i -1
max (1+|Re(re’®vuy|) if 1>0
(1) =4{v, =0 (1Al >v)
v¥Fu
YR if 1=0
and

>

k

Y(x,2) :=( 7 A_rP[r](x) +a Bk(x,A))E(x,A)

r=0
=3 ﬁk(x,A)E(x,A)
18 a fundamental matrix of the system

y'-A(-,x)y=0

12



for all x| >y. Furthermore,‘- %B}'((-,A)=o(1) in Mn(Lm(a,b))
as v and BL(-,0) =0(x()) in M_(L_(a,b)).

PROOF. A. (3.3), (3.4), and (3.5) are equivalent to

(3.6) P\[)g]=0 (Viu=0,c..,liv %), P\[)S](a) =Ip, (v=0,...,1),
' 1 r 1 s
(3\.7) P\[)i] —Ao \)\)PE):S] = Z AO v P[f)-] + Z Z A_. P[r‘J]
’ q=o VG g ].__1 q=0 J.vg qv
g¥*v
(v=0,...,1; r=0,...,k),
- 1 r 1. -
(3.8) P\Er+1]=(r 1) 1{P[r] - T T a. »lF 3]}
u \Y H Vi j=oq=0 J/vg qu
(vyr=0,...,1; v #yu; r=0,...,k-1).
Let P\[)i)] EMn(W1'°°(a,b)) be the fundamental matrix of
y' -Ao'vvy=0 with P\[)(j](a) =Inv (v=O,‘...,k'l), see [28], (4.18).

For v#+u we set P\ES]=O. Then (3.6) and, for r=0, (3.7) are

1
valid. From P[O] - A P[o]
Vv O,vv vy

P[O]EMn(Wk+1’ a,b)). The
sively defined by (3.8) and a solution of (3.7).

=0 (v=0,...,1) we obtain

°°( P[r+1] (r=0,...,k-1) are recur-

B. For k>0 we define

~)\_rP[r](x) (x€ (a,b), r€C~{0}).

P (x,A) :=
k 0]

I~

r

2

— % _ 1
For k=0 1let Ao—( O,vu)v,u=0
1

—‘]~ (-]
=0,...,1 - ‘ '
(v=0 1) and (rv ru) AO,vueMn\)rnu(W (a,b))

EMn(Lm(a,b)) such that

AO,\)\) = AO, vV

(Vviu=0,...,1; vyu). We set

(11 _ _ -1~ [0O] _ )
Pvu- = (ru r\)) AO,\)uPuu (vop=0,...,1; v*u)
and .
11
pl1l o0 (v=0,...,1).
[1] 1,0
Then P €Mn(W (a,b)) and, by (3.3), (3.5), and

AO,vv = AO,\)\)'
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(3.9) plol' _x plo] A, -A.P =0

holds. We set
Py (%, 1) =pl%0 ) a7 (x) (xela,bl, AeC~{0OD).
et | | be a norm on Mn(m) which makes it a Banach

algebra. Then Mn(Lm(a,b)) is a Banach algebra with respect to

ol

} Ioo. For each v=0,...,1, va is a fundamental matrix by (3.7)

and P[O](a) =In' Hence P[O] is invertible in Mn(WkH’m(a,b)) Lo
-1

Mn(Loo(a,b)). Let K>O0O such that IP[O]Imf% and IP[O] lw_<_-125.

In the case k=0, K does not depend on XO' Thus we can choose

A with the property

(o}
o -2_-8
(3.10) 1Ay - Kyl < (1+1) K .
Then there is a vy >0 such that Pk(-,k) is invertible in

-1
Mn(Lw(a,b)) and lPk(-,A)Ime, IPk(-,)\) I <K for Ixl>vy.

For x€[a,b]l] and |Al >y we set

N - (0] , ,-1,,011" _ 013 _
Do (* s ) .——{(AO Aj)P +1 (P AP

0

-1
A (.IA)PO('IA))}Po(.IA)

and, if k>1,
2k

_ k1!
Dk(~,>\) :—{P - )
r=k j

k .
r oakrp plr-dl.
=r-k J
L1,k -1
A A (.’)\)Pk(.’x)}Pk(.,A) ’
furthermore, for k>0,

Sk(x,x) :=Pk(x,>\)E(x,>\) .

Let «k =max{1,k}. In view of E'(-,A)=>\A1E(-,>\), (3.3), (3.4),
and (3.9) for k=0, we infer, omitting the variables,

- - p! "
Sk ASk PkE + PkE APkE
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j==1 J r=0

K K=1
5 )‘-rP[r]' + A rP[r+1]A +)\P[O]A
r=0 £=0 1 1

k+k min{k,r} - P ~k=
- T N A rA_.P[r 31 4=k 1AkPk}E
r=-1 j=max{-1,r-«} J ;

k=1 . r -
{)\<F,[O]A1 _A1P[O])+ 5 A-r<P[r] -5 A-jp[r jl
r=0 j=0

.k .
+P[r+1]A1 —A1P[r+1])+A_K(P[K] -7 A_.P[K_J])

j=o0 ~J
k+k k .
- k=1 5 RO rA_.P[r j] S 1Akpk}E
r=¢+1 j=r-¢ J
_ .=k
= 2 DS, .

We refer to [28], (4.4) for the rule of the differentiation of a
product of elements of Sobolev spaces.

Let I(v) be the nxn-matrix whose v-th diagonal block

is In\, and whose components are zero elsewhere. For |A]l >y,
viu=0,...,1 we set x () =a if Re(rel®¥) <0 ang x,, () =b
if Re(2e™VU) 50 where ®,, 1is arbitrary, e.q. o  =0."
Next we prove that for sufficiently large A there is
a C(-,1) €Mn(L°°(a,b)) such that
-k 1 b4 (v) =1
(3.11) Clx,2) =1 -1 X J s (x,1 S, (£,2)Dy (£,1) *

v,u=0 X\)u (%)

* C(t,A)Sk(t,)\)I,(u)S;1 (x,2)dt.
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For this we consider the continuous operator

T, : M _(L_(a,b)) »M (L, (a,b))

given by
1 X _
(T,£) (x) =1 -2k z S S (X,A)I(V)S 1(t,x)*
A n k k
v, u=0 XVU(A)

(u)

_1 ‘
# D, (£, M) E£(t)S) (£, )T " s " (x,A)dt

(f € Mn(Lw(a,b) ). From

(v) (v) (v)

E(x,\)I =T E(x,)\) = exp(ARv(x))I

we infer
Ex, VI ME, )7 = exp(A(RV(x)-Rv(t)))I(v).

Using

. X
- = 10 -
R,(x) =R (t) +R (£) -R (x) = e "WV { lr,(n) —x (n)ldn
we obtain
- x & X i
(T_£) (x) - (T,9) (x) = A% 3 | exp{xe Cuy
A A _
\),u—Oxvu()\)

X

«fizy () —x () 1anfey (e, 010
-t

-1
P (£,A)D, (t,}) *

* (g()-£(£)P (6,01 M e (x, 1) at

for f,gEEMn(Lm(a,b)). By the choice of xvu(k) we obtain for
each t in the compact interval with the endpoints xvu(k) and
x € [a,b] the estimate

. X
lexp(1e™®Vu [ |x_(n) - x (n)ldn) |
t u

. X
= exp(Re (A ™) [1r (n) -~z (n)ldn) < 1
£ Vv H

We may assume II(V)I°°

<K. Then

IT, 1< I 7@K D (-, )P, (-, )

A 1°
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There is an M>O0, such that, for sufficiently large 2,

. 2k k _ » _ ko
IP[k] -y 5 Wk rA_.P[r jl - 1Ak(-,A) T 2 rP[r]l1
r=k j=r-k J r=0

<M

if k>0 and

(11 (11 _.,0
P - AP AT(-/MP_(+,A) |, <M

if k=0. Hence

IT, 1 <1275 +1)ky

for k>0 ang, if k=0,

I < (02 (A ~K ) Ky

IT 0 80l 3

\ M < 2+ a7 @2k 7y

according to (3.10). Thus there is a & <1 such that ITAI <&
for Al >y if y is sufficiently large. By Banach's fixed-
point theorem, fdr each |X| >y there is a C(«,2) EMI;(Lw(a,b))
such that (3.11) is fulfilled. In addition, the a-priori estimate
of Banach's fixed-point theorem yields
(3.12) ICC-,2) =T 1 < (1—6)—1ITAIn—Inlw .

From (3.11) we obtain C(.,1) E,Mn(w1'°°(a,b)) and

C'(x,1) =—A—ka(x,>\)C(x,A)
-k 1 % (v) =1
- v i Sp(x,M)1I S\ (t,A)Dk(t,A)C(t,A)Sk(t,A)*
v,u=0x (1)
Vi
P 1M e ae sk > T os )T ™M s e, »
k(% ). k (X2 x (&

v, u=0 X\)U (x)

* Dy (esncte, 08 (6,01 M s 080 (2,087 (x, 1 a
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—A-ka(x,A)C(x,A)-+S£(X,A)S£1(x,k)(C(x,A)-In)
- (C(x,0) = I)S) (x,2)8; | (x,2)
= —)\—ka(x,A)C(x,A)_ + s]'<(x,x)s]-<1 (x,\)C(x,1)

-1
—C(x,A)Si(x,k)Sk (x,2).
Define

(3.13) Y(x,2) u=C(x,A)Sk(x,A).
We infer, again omitting the variables,

Y' = C's, +Cs;

k k
= (-2 ¥p c+s's'1c—cs's"1)s +Cs!
k k°k k"k k k
_ .-k -k
= =X "D,CS, + (A Dk+A)CSk
= AY .
Furthermore
Y(x,)) = C(x,x‘)Sk(X,A)
k
= ( v A Tplrl(y +A‘kBk(x,A))E(x,A)
r=0
where
! X : (V) =1
By(x,2) = - T f So(x,A)I Sy (£/A)Dg(t,A)*

v, u=0 X\’U (2)

* C(t’k)so(t'k)l(msy (x, )P (x,1)dt + 2 Tel1 (5

and, for k>0,

. T (v) o1
B (x,2) = - T J 8 e, s T (£, 0)D (£, 1) *
VIU=OX\)U()\)

*C(t,A)Sk(t,A)I(U)S;1(x,A)Pk(x,A)dt.

It remains to prove the estimates for Bk(-,A). We have
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Bo(x,0) = (Cx, 1) =T )P (e, ) 427 e )

and, for k>0,

1l

B, (x,1) ZKcix, ) - I )P, (x,1).

In order to prove Bk(-,x)=o(1) as \A=w and

1 . _
B, (+,x) = 0( max (1+|Re(kel(p"“)l) 1)
k —

v,u=0

vFu

we thus only have to prove that these estimates hold for
Ak(T I -I ). For this let
A'n n

(0] ._ &% _ (o]
Q = (AO AO)P
and, for k>0,
_ .k .
olkl .o plkI' L § 5 plk-i]
j=o0 ™’

From (3.5) and the choice of A we conclude that the block di-~

0
agonal of Q[k] is zero. Hence

K . 1 X

AT I_-I)(x) = - T i exp{Aeleu*
A n n _
v,u=0x . (1)
v¥yu H

X -1
{1z, () = x, () 1an}plO o 1 plO]

™ ey «
t

-1

[0 " (x)at +10(x,1)

*x P

for 1Al >y where {Q(-,2) : IAl zy}CMn(Lm(a,b)) is bounded.
Thus the required estimates on Ak(T)\In —In) follow from
(3.14) PROPOSITION. Let gELp(a,b) (1<p<w» and

r€L_(a,b) such that r>0 and rler (a,b). set

X X
R(x) :=Jr(g)de  and F(x,1) := fexp(x (R(x) - R(t)))g(t)dt.
a a
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Then F(-,x)=0(1) <Zn Loo(a,b) as Rex <0 and A-w,
If gE€L_(a,b), then F(-,A) =0((1+IRerAl)”) for Rer<O in
Lm(a,b). -
PROOF. Let ¢ >0 be arbitrary. There is a function he€w'’ (a,b)
such that

-9 £ =1
Ih-21, < 3irl].
Then
X . c
| fexp (A (R(x) = R(t)) (g(t) ~h(t)r(t))dt] < Ih-%l1lrlm§§
a
and
X 1
| fexp (A (R(x) ~R(t))h(t)r(t)dt| = lx{—h(x)
a

x
-+exp(A(R(X)'-R(a))h(a)'+fexp(k(R(x)-R(t)))h'(t)dt}l
a

<

Nf

if A 1is sufficiently large. The first assertion is proved. Fur-
thermore,

X
[F(x,2)1 < I%ij'r(t)exp(ReA(R(x)-R(t)))dt
a
= I%ImlReA|_1(1 -exp(ReAR(x))) < 1211+ 1rea) "0 (1)

and the second assertion is also clear.
In order to prove the estimates for %Bi(-,k) we con-
sider

k...
By (+,1) = Ak<Y(-,>\)E—1(-,>\) -7 A’JP[3]>.
j=0

With the aid of (3.3) and (3.4) we obtain

. ' kKoL oraq
By o) =35t 0 ET oy T - f T el )
3=0

k/- ~ - k. (57"
= A (A(-,X)Pk(-,l) =P (-, M)A, - T a7IpH) )
j=o0
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k-1 ' r .
= xk{x(A plO] -P[O]A1>- T x'r<p[r] - v a plr-il
r=0 i —J

' k .
-+P[r+1]A1-A1P[r+1])-x—kp[k] + T % 2 "Ea plr-il
r

k .
TN STPON A'rp[r]}+A(-,A)Bk("” TR )Ry

A "rplr]

o)

. k
= _P[k] + Z
r=0 j=r J r

M=

k .
Y A ta .P[r+k'3]-+x 1Ak(-,x)

+A(-,A)Bk(-,)\) —ABk(-,)\)A1.

Hence % B];(-,A) fulfills the same estimates as Bk(-,A).
(3.15) COROLLARY. Assume that there is q k €EN  such

that A, €M_(W®(a,p)), A eM (W@ 0y (3=0,...,K),

IS €M (W'"(a,b)) <s bounded in M_(W'7(a,b)) as A -w.
Then p{r]emn(wk*”"”‘r'”(a,b)) (r=0,...,k),

k+1,0

Bk(-,A) GMn(W (a,b)), and for p=0,1,...,x+1 we have

;%B}ip)(-,)\)=o(1)-in M (Ly(a,b)) as A-e and
-;—pB]ip)(-,A)=0('r(>\)) in M_(L_(a,b)).

4. THE INVERSE OF THE BOUNDARY EIGENVALUE OPERATOR
FUNCTION
Let T be given by (2.3) and suppose that o (T) ¥ d@.
For X€o(T) and f,€L)(a,b), £,€C" we define

.1 RE =TT ) (£,,0),
]

(4.2) R2(>‘)f2 =T (1) (O,f2).

For fEHr;(a,b) and X €p(T) we have

(4.3) £ ="V ()T E = R1(A)TD(>\)f+R2(>\)TR()\)f.
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We now give a representation of R1(A) and RZ(A). For
this we set

m () X
(4.4) F(x,\) := ¥ W3’ () +[W(t,\)dt (a<x<b),
j=1 a
a.<X
J
m (3) .- b
(4%5) F(b,A) := ¥ W'’ (A) + [W(t,r)dt.
j=1 a
It follows that
R b n
(4.6) T (M) y=[dF (t, )y (t) (yEH1 (a,b))
a

where the integral is the Riemann-Stieltjes integral. Let Y(-,})
be a fundamental matrix of TD(A)y==O. The Green's matrix of TD
is defined by

g - -
(v ooaFE, Y, 0Y (e )
t=a

(a<g<xgb)

(4.7) G(X,E,)) := 4 b

=J YoM (DA (e, Y (e, YT (e, )
£=¢
y (a<x<g<hb)

where M(A)==TR(A)Y(-,A) and X €p(T). G is of bounded variation

with respect to &£. Hence G(x,-,X)EZMn(Lw(a,b)). We set

(4.8) G(x,2) :=Y(x, V)M (N (x € [a,b]l, A €p(T))

and state

(4.9) PROPOSITION. For f£,€Ly(a,b), £,€L" and
A€ p(T) we have

b
i) (R1(A)f1)(x)==fG(x,5,A)f1(£)d£,
a

1) (R ()£, (x) =8(x,\) £,

_ b
114) (7700 (54,5500 (x) = [G(xig, M) £, (£)dE + E(x, M) £,
a
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PROOF. we only have to prove iii). From
[ b

JG(x,g,0) £, (£)dE
a

(4.10)

A

X & _ -
= v, 0] M )R (e, 0Y (YT (5,0 E (0)ae
a t=a

b b _
- Y(x,\)f [ M
X t=¢

1

(VAF (€, MY (£, )Y (5,2) £, (5)as

we infer

b
JG(- 8,0 £ (£)dE € H (a,b).
a

Adding and subtracting the term
Xx b

Y(x,\) [ M! (A)th(t,A)Y(t,)\)Y_
a t=¢

Te, £ (B a

in (4.10) we obtain

[ b X
fGlx, &, )€ (E)de =Y (x, )Y (6,1 £, (£)de
a a

(4.11) 1 b b
- Y, [ M A F e, DY 0Y T (e, E, (B)dE
L a t=¢g

since

b
M(A) =fth(t,A)Y(t,x)
a

by (4.6). (4.11) and TP(A)Y(-,A) =0 imply that
D b A
(4.12) T (A)<IG(-.£,A)£1(g)dg+G(-,x)f2) = f,.
a

Again from (4.11) we deduce that

R b b X 4
TEMD G- e, E (e)dE = A F(x, )Y (x, M) YT (g, £, (£)de
a a a
b b 1
= J J AP, MY, MY (5,0 £, (£)dE = O.
a t=¢g t !
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Thus

RO (@, NE) = £,

which proves the.assertion.

5. REGULAR BOUNDARY EIGENVALUE OPERATOR FUNCTIONS

In this section we consider a boundary eigenvalue oper-
ator of the form (2.1) and (2.2) where A, W(j) and W are poly-
nomials with respect to .

We assume that p(T) #@. Then o(T) is a discrete sub-
set of § and T-.1 is meromorphic, see (2.4). We fix closed
Jordan curves l’v cp (T) (v €EN) such that O€ int F\) ’

U intr =¢C.
veN v

(5.1) DEFINITION. Let | | be a continuous norm on
H?(a,b) and let p,p'€Z.

int I‘v < int I‘\)Jr1 ’

i) T is called | I-regular of order (p,p') with respect to

f= (f1,f2)€2L2(a,b) x " (and with respect to the curves Fv) if

JIx PR 0 g 11ar ] ~0 (v )

Ty
and

...p'_‘]
i R, (M) £,11dx] =0 (v > )
2 2

I-‘\)
hold.
ii) T 4is called | |-regular of order (p,p") (with respect to
the curves T ) if T is regular of order (p,P') with respect

to all fe€L)(a,b) xC".

From now on in this capter we assume that there is a
C(-,A)EﬁMn(W1’w(a,b)) which is a polynomial with respect to A
and an A(-,\) of the form (3.1) such that

(5.2) C-1(-,>\)TD(>\)C(-,>\)y=y'-X(',>\)Y (y€Hr11(a,b))

holds for all sufficiehtly large A. We also assume that C(-,2)

is invertible for all sufficiently large ) and C(-,>\)._1 =

A
. ) A .
{0(x9)}_ with some Q€Z. The following statement is evident.
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(5.3) PROPOSITION. Let Y(-,)A) be a fundamental matriz of
"i"D(A)y:=y' -A(-,\)y=0. Then

(5.4) Y(-,2) :=C(-,N)Y(, )

8 a fundamental matrixz of TD(A)y==O for all sufficiently large
A.

We are going to deduce sufficient conditions for regul-
arity. Let 95 and 9, be the orders of the polynomials C(-,X)
and W(+,}), respectively, anq let 94 be the maximum of the
orders of the polynomials W(J)(A) (3=1,...,m). In addition to
the assumptions in section 3 we assume that for u=0,...,1
ru(t)==|ru(t1;ei¢“ (t € (a,b)) with some wu €R where either
ru==0 or ru ELw(a,b).

Let Y(-,)) be an asymptotic fundamental matrix of
TD(A)y==O as constructed in section 3, and let Y(.,X) be given

by (5.4). First we investigate the asymptotic behaviour of the
function

(5.5) B (1) r=5_(1) +0; (1)

where I 1is a subinterval of [a,b] and

2 (3)
S.(A) == T w3l yva., ),
I 521 3
(5.6) ajel

A,

QI(A) := [W(t,\)Y(t,r)dt.
L I

From (3.2) we conclude that

m . k
s = 3w ()\)C(a.,x){ v Telrl 4 ) +>\—kBk(a.,}\)}*
j:’] J r=0 J J
ajEI

J=1
a.cIl
J

, m
. = 291 . (ME(a.
* E(a],k) A N S]( ) (ajll)

where qi < 9, + dqs
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—

-i _k'/\
15.
A TS 5+ sj(x),

S, (2) =
gV = B Sy,

I ™

i

A
| I - - ' = .
k1—k (qo+q1 q1)_>_0, Sj,iEMn(([), Sj(k) 0(1). The SJ(A) and

the Sj i depend on I as q; depends on I. But we may choose
14

to consider gq! to be independent of I (e.g. 4g}=9g.+9g,). The
1 1 0 1
-1

Sj‘ are asymptotic polynomials with respect to A and with
coefficients in Mn(m), Here a function of the form
s . -5
£(0) = % A If, +2 %0 (1)
j=0

is called an asymptotic polynomial of order s with respect to
A-1

Let ”r'u(x) and exp(xﬁu(x)) (,=1,...,n) be the dia-
gonal elements of A1(x) and E(x,)), respectively. Note that

. X
R (x) =e™®f1% (1) 14t (u=1,...,n; x€la,bl).
u a M
- ((J) n
Set Sj(k) —.(s\)u (A))v,u=1' Then
—{(3) ~ )n
Sj(A)E(aj,A) (s\)u (A)exp(ARu(aj) v,u=1"
Hence
a1 T _(3) ~ n
(5.7) SI(A) ;(x 1]__2__:15\)u (A)exp(XRu(aj)>v’u=1
a.el
J

where the séa) are asymptotic polynomials of order ki with
respect to A_1.

Next we consider

k

k
QL (V) =Iw(t,A)C(t‘,x)< n a7l () 407 Bk(t,)\)>E(t,>\)dt
r

I =0

=1292{Q (¢, \)E(t,\)dt
I
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where q; <qy+d,, ky=k-(q,+q,-q5) >0,

k2 - - 1
(e, 1) = ¥ aTho (8) #2720,
i=0

Q; €M (L (a,b)), Q(-,2) = (o(1)} . With Q(t,) ==<qw<t,x))’3 4=

n
and T=. [aI,bI] we obtain

by
[ a, L (E) exp (AR (t))dt>

IQ(t,A)E(t,A)dt=(
I ar

su=1"

First let 'i"u=0. Then 'ﬁu=0, and

by by
jq (t A)exp(AR (t))dt = jq (t,A)dt
= a3 ) = g7 (exp OF (a1 +a P () exp OF (b))
where qé‘:I) and q(bI) =0 are asymptotic polynomials of order

k.é with respect to >\-1_.

Now let 'f'u¢0. Set xu(A) i=a; if Re(Aelwﬂ)f_O and

xu(k) :=bI if Re(Aein) >0. For each t¢€ [aI,bI] we estimate
Iexp()\(Ru(t)-—Ru(xu(A)))I =exp(Re(A(RU(t)—Ru(XU(A)))) < 1.

Let W(-,1) €Mn(w10’1 (a,b)) and C(-,1) EMn(wlO’“’(a,b)) for
some iozo and let the assumptions of Corollary (3.15) be fuls
filled with some «k €N. We set 1 = mln{l ,k+1, k }. By Corollary

(3.15) and the definition of Q we obtaln qvu( ,>\) EW11’1 (a,b).
We define

[O] .=
u\)}J (XI)\) -—qvu(x,l)r

o NEIR
u\[)131+ ](X,A) :=(;—“> (x,1) ( j='O,...,11—1),

u

With the aid of Corollary (3.15) we infer that the u\[)ﬂl are

asymptotic polynomials of order ké -J with respect to A—1 in

Mn(L1(a,b)). An integration by parts yields
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I 4 5 pugd e < 1Pr
fu 2 (6, )expOF (£))dt =g ——————exp O (£)) | _,
at H . U ru(t)' u 1
1P
——-J'u[3+1](x,k)exp(k§ (t))dt
A v u
ag
far j==O,...,l1—1. Hence we obtain
by
;'qvu<t,x)exp(xRu(t))dt
I
1,-1 (3]
1 . _ . .0 (t,\) N b _
= p eI e R e | I+ -1t 1,
j=0 r (8 H I

by
* | u£i1](t,A)exp(A(§U(t)—§u(xu(x))dt exp(xﬁu(xu(k))

ar

by a recursive application of the foregoing equation. Since

(113, _r=[14] —[11] .
u ( ,A)——[u\)u ]1 for some u\)u Elw(a,b), we obtain by

Vi
(3.14) that the integral on the right side tends to zero as

Hence there is an asymptotic polynomial

A >

uniformly for all I.

avu in L_((a,b)x(a,b)) of order l1 with respect to A
such that

= (492! B
(5.8 o 00 =(192{q tap,bp M expGE, (ap))

~ ~e n
-kqvu(bI,aI,A)exp(ARu(bI))})v,u=1.

We now consider the characteristic matrix M(})

TR (A)¥(-,1), where Y(-,A) is given by (5.4). From (5.7) and

(5.8) we obtain that there is a gq' fnmx{q%,qé} such that

S .

5.9 M (A =xq< 33 R (a. >n
( ) (x) j§1avu (M) exp (A u(aj)) v, =1
where the gii) (v,u=1,...,n; j=1,...,m) are asymptotic poly-

nomials with respect to A-1.
In the following we give an estimate for the determinant
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of M(A). By (5.9),

det M(A) = ¥ Bc(x)exp(xc),

CEE
where
n~ . «
(5.10) E={l§1Rl(aj(l)) H ](1)Iooolj(n) € {1,...,m}}
and

~ _ .V
bc()\) = A C[bc]

with vcgnq'. Let P Dbe the convex hull of E. Let Kc[O,1]
and set

n
EK :={l£1alRl (b) : @y EK}.

Let PK be the convex hull of EK'

(5.11) PROPOSITION. P=P{O’1}=P[O,1].
PROOF. Since ﬁl(a) =0 and ﬁl(aj) eo,ﬁl(b), the in-
clusions

that P

E{O 1}<:E<:E[O 11 hold. Thus we only have to prove

. X [ = :
[0,1]<:P{0,1}. Let al€ fo,11 (1=1,...,n) and choose li
(i=1,...,n) such that {li :i=1,...,n}={1,...,n} and
alqyS--- <ol - Then

n ~ nN n
L iR, (b)=ay, T Ry(B)+ L
i=

o}

(0q; -1, _ _z"ﬁlj ®)+ (1-a1 )-0,

1 2 j=1i

1=1 j=1

where OEE{O,HCP{O,T}' Oguli—onli_1 <1, 051~aln§1,
n n
@l + 3 (ali-ali—‘l) + (1—aln) =1, _Z

'ﬁl .(b) €E
i=2 . J

(0,11 “¥10,13°

i
Hence P[O,1JC:P{O,1} since P{O,1} 1s convex.

The boundary of P consists of a finite number of line
segments PS (s=1,...,8). We have

PSIWE = {CS'Fasts jii= 1,...,ms},

14

where cSEPsnE is a fixed element, aseﬂi\{o}, t iE]R. We set

S,

vs,i 2=V, for c==cs-+astsli. Let E be the set of the vertices

29



L :={(t_ . ’vs,i) sie{1 ,...,ms} ,cs+asts

s s,i 1€E or bc +0}.

, stagts,i

Let Lsc'ﬂs be the set of those points (t

S,i'vs,i)€Ls for
which there are no two different points (ts,i1'vs,i1) ’
(ts,iz’vs,iz) ELS and no t€ (0,1) such that
ts,i=tts,i1 + (1—t)tS,i2 and Vs, i gt\)s,i1 + (1—t)vs,iz' Set

E:={cs+onstS i ¢ s€{1,...,S},(tS :L'vs,i) €LS}.

’ [4

~ A
Note that EcE.

N {(5.12) LEMMA (Lange’r/)\. Assume that bc#o for all
CEE and set g :=min{vc : CE€E}. Then there is an increasing se-
quence (dj)°1° of positive numbers, dj-mo as Jj-ew, and a posi-
tive constant & such that for all Kr€C, |l =dj (J EN) there

is a c(A) €E such that Re(A(c=-c()A))) <O for c€P and the
estimate

1279 det M(1) exp(=Ac(A)) ] >6
holds.

This statement stems from Langer [24], p. 176.
A ~(5.13) REMARK. If all vy are equal (e.q. vj=nq'),
then E=E.
(5.14) THEOREM. Assume that bc*O “for all cEI,E\:. Then
there are p,p'€Z such that T <s IILg(a,b)—reguZar of order

(p/P') with respect to the curves given in (5.12).
PROOF. Let £, €Ly(a,b). From (4.7) we obtain

b

IG(x,a,x)f1 (g)deg
a

x £ _ -
=y, f ot onaE e, v e,y @, () as
a t=a

b b
~¥een S [ owTona @YY (0 (6 ae
X t=¢

X
= Y(x,\)[M "(\)M (MY “(g,A) £, (g)deg
a [a,£) 1
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b

-G 0R, YT e, E (Dae

. [g,Db]
b 4 ~1

= Y(x,A) M (A)M(X,E,0)Y (e,2) £, (8)dg
a -

where MI(A) has been defined in (5.5), (5.6) and

M (x) for a<g<x<b
M(x,E,1) = { a8
_M[E;,b]“‘) for a<x<t<b

We recall some well-known results from linear algebra. Let

M= (m1,...,mn) €Mn(¢) be invertible. Then
detM-M" 1 = (det M )n B
vu/v,u=1

where M := (m ,m
vu

grees v_1,e“,mv+1,...,mn) and eu is the u-th

unit vector in @n, i.e. the v-th column of M is substituted by
the u-th unit vector. Let A==(a1,...,an)(EMn(E). Then

(5.15) (det M) M~ A = <det V% >“ _
vue/v,u=1

A ,

where Mvu p—det(m1,...,mv_1,au,mv+1,...,mn). For the proof of

(5.15) let A=: (a )"

. We obtain
op’a,u=1

n
n
Y (det Mva)aau)

_‘l _
(detM) M A = <a=1 v, u=1

n
n
! § aauea'mv+1""’mn))

(det(m1,...,m v, u=1

]

n
(det(m1,...,m ,mv+1,---,mn))v'u=1.

From (5.7) and (5.8) we infer that the u-th column of M(x,&,7)
has the form

a
v=1'"u

(5.16) m (x,£,)) =xq( )y a(S)(x,E,A)eXp(Aﬁ (s)))
H ¢ \s€N(x,£) ™ H

where ¢ F=max{q{,qé},
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{a; : j=1,...,m; a,<g}lU{g} (a<g<x<bhb)
N(XIE) - J j
-{aj : ji=1,...,m; ajzg}u{g} (a<x<g<hb)
and the aés) are asymptotic pdlynomials in Lg((a,b)x(a,b)).

Let mi(x) be the i-th column of M(A). From (5.15) we conclude
that

1

E(x,1) (det M(1)) M (A)M(x,£,\)E ' (£,2)

= (exp O (E 00 =K (£)))det tm, (1) ,-.eum _y (0 4m (x,8,0) ,

n _. n
mv+1 ()\) P ,mn(l))>\)’u=1 =: (h\)u(X’E’)\))VIU=1.

For v=yu we have

h | (x,6,0) = an{lgA hl e, nexp e x,60) )
AY

(]

Vv
mials in Lm((a,b)X(a,b)) and

where Av is a finite set, h (1€Av) are asymptotic polyno-

n
cl(x,a) = Rv(x) —Rv(g) +l§1Rl(ajl (1

1%v

)) +Rv(sl)

where s, €EN(x,£). Since ¢ 1is an element of the interval with
the endpoints S, and x, we obtain

0 < IR )1 = IR (8)1 +1R (s )1 < IR, (b) 1.

Set xv(A) :i=a if Re(kelwv)_fo and xv(k) :=b if Re(Aele)>O.
Let

A "~ n~
c, () :=Rv(xv(>\)) +1§1Rl(é’tj1 (l))°
l+v
From
Re(A(c (x,€) -=C (1))
= re 0l IR (0 1 - 1K (61 41K (s ) 1 = 1%, (=, (1) 1} g0
we have -

hvv(x,E,A):=AHQ{ 3 hsv(x,a,k)exp(xc)}
CEE
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where E is given by (5.10) and hsv(',wk) ={0(1)}_.
Now let v # u. We define

A M (A) for a<g<x<b
M(x,£,1) :={ _Le,pl
_M[a,g)“‘) for a<x<t<b
and obtain
M(x) for a<g<x<b

M(XIEI)\)+D/>I(XIEI>\) = -
-M(x) for a<x<g<hb

A
As for M(x,Z,)) we conclude that the p~th column of M(x,&,)\)
has the form

m(x,£,1) = xq( v a's) (x,6, 1) exp (A <s>))
u A " H
SEN(x,¢)
where
A la,:3=1,...,m; a,>8}U{g} (a<eg<x<b)
N(x,£) = ) J
{aj :)=1,...,m; aj<£}U{£} (agx<gg<h)

A .
and the aés) are asymptotic polynomials in Lg((a,b)X(a,b)).
Subtracting or adding the v-th column to the p-th column in the
determinant defining hvu(x,g,k) leads to

hvu(x,E,A) = exp (A (R (x) -RH(E))) *

*det(m1(A),.--,tI/T\IU(X'LX),-.-,mu(X,E,X),---,mn(A))

_ ADQ{ 5 h&;](x,g,x)exp(kcl(x,é))}
IEA\)u

h A f t -
where v is a finite set, hvu (1€AW) are asymptotic poly

nomials in Lw((a,b)X(a,b)) and

c (x,8) = K (x) =K (¢) + R (ay )+, e v B v

< M3

1
%

1
l+v,

u

A
where x €N(x,£) and y €N(x,£), i.e. a<y €<% <b or

asx1 5g5y1 <b. Let xv(k) be defined as for v=u and set
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n

A ey ~ o~
c (M) =R (x (M) +R (x (1)) + 151 Rl(aj‘(l)).
l1+v,q
From ~
Re (A(c (x,£) =& (1)) = Re(2e ™) (IR (x)1 - I (x (\)) 1)
1 1 Vv v \V]
10, 1% o 5 oy
+Re(ae™ M) (IR (x )1 =1R ()1 +IR (y DI -1R (x (A)1) 20
we have

h (x,£,2) =" { = h (x,E,A)exp(AC)}
H CEE v
where h€ («,+,2) ={0(1)}
VU (-]

From 'S‘("(-,)\)E(-,A)_1 ={0(1)}_ and the assumptions con-
cerning C(-,A) we infer that there are k(\fu(-,)\) ={0(1)}2

and q3€Z such that

b
IG(x,s,A)f1(a)dg
a

= 1293 "1< s (k€ )n .
AZ3(det M(A)) c:E,E(k\)u(x,>\)exp(>\c)) v, =1

Lemma (5.12) yields

=1

| (det M(A)) Texp(rc) | < 8 "1l Ilexp (A (c-c (1)) |

for Il = dj' This proves

Jo1aT93%9m2g JOOE g
214,

(a b)ldkl -0 (j-e).

We have
E(x, 1) (det M(A))M_1(A) = (exp(kﬁv(x))*
*det(m1(>\),...,m 1(>\) e /m, 1(>\),...,m (X)))

v,u=1

A n
=: (b, (a3 L.
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We obtain

A _ (n—T)q{ A1) }
hvu(x,k) A 1€¥vuhvu (A)exp(xcl(x))

A
where Fvu (cE) is a finite set, hiL] are asymptotic polynomials
and

o]

~

c (x) =R (x)+ ¥ R
! v 1=1
1%v

135 @)

+#

We define xv(k) as above and set

A o~ no.
c (A) := Rv(xv()\)) +l§1Rl(ajl(l)).
1+v
From
Re(h(e (x)=C, () = Re(xe™®) (1X () 1-1K, (x_ (001 1) < o
we infer

A _ (n—1)q{ Ac }
hvu(x,A) A cEEhvu(x,)\)exp()\c)

where QSU(-,A) ={0(N)1}_.
Let £, €% From ¥(-,M)E(-,1) 7" =(0(1)}_ and the

assumptions concerning C(-,A) we infer that there are
A
kS (-, ={0(1)}, and dy €Z such that

Vu

-1 - A
Y(x,A)M (A)f2=xq4(detM(x» 1( T kSu(x,A)exp(Ac))S

CEE ru=1r

This representation and (5.12) yield

~qqtg-2 '
{ I A RZ(A)fZILn(a,b)IdM—»O () » =),
m—dj 2

and the theorem is proved.

6. AN EXPANSION THEOREM

In this section we assume that A(-,X) =A_+ 22

where
- h 0" A
AO,A1 € Mn(W "“(a,b)) for some k EN and

A1==d1ag(r1,...,rn)
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~ ~ ~_1 D -
where r1=...=rp=0 for some O<p<n-1 and rp+1,...,rn1€

Wk’m(a,b). We set 1 :=n-p, 9, :=diag(T ..,?n), and write A

1 p+1’° )
as a block matrix in @F XEl
[O] [O]
A A Aqp
(0]
A[OJ [0]
21 22
(6.1) PROPOSITION. Let T be IIL (a b)—regular of or-
der (p',p") where p'>0 and [, IAl 1d>\|_m (v » ).
v
Then T s IIHn(a,b)—reguZar of order (p'+1,p"+1).

PROOF. Let f1 ELg(a,b) and fZEZEn. The assertion of

the proposition immediately follows from

. D
(R1(A)f1) T (A)R1(A)f1-+(AO-FAA1)(R1(A)f )

1

f1 + (AO+ )\A1) (R1 (A)f1)

and
(Rz(k)fz)' = (AO-+AA1)(R2(A)f2).
(6.2) PROPOSITION. Let f£E€H), . (a,b), f=: yLol ol
k+1(a b) xHi+1(a b) and assume that y[o]' E?]y[ol Eg] [O]
Then there are f[J] €Hk+1 .(a,b) (3=1,...,k+1) such
that ' _
(6.3) gl3] —-Aof[J]—A1f[]+1] =0 (j=0,...,k).

PROOF. For j=1,...,k we recursively choose a solution

y[J] EHE+1 ](a +b) of the differential equation

yUIT LAl 15) 01,051 _ g

and define

j+1 - i1 ' ' :
LL3+1] :=Ql1{z[J] _Ag?]y[J]_Ang)]z[J]} (5=0,...,K).

We set y[k+1]:

=0 ana £t31 .2 (031 LU3)y ne £03) have the
desired properties. ‘

In addition, we assume that TR is a polynomial, i.e.
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q
™oy = ¢ A’CT;2
r=0
for some g€N.
(6.4) THEOREM. Let T be | l-regular of order (p',p")
with respect to the curves T (vEN) and assume that

\Y)
k >max{p',p"}. Suppose that f € H" (a,b) fulfills the assump-

k+1
tidns of (6.2) and that

min{qg,k-j+1} .
(6.5) 5 rRelItE-1] g (3=1,...,p"
r=0
where the flj] €Hi+1_j(a,b) are defined according to (6.2).
Then
f = 1lim )3 {—(res R,)A_f
vl 1

v=o p€o (T) nintrv

g-1 . min{qg,k+j+1} o
+res _ (RZ(A) r ad > TRelr=3 1])}
H i=0 r=3+1 *
. n
holds <in (H1(a,b),l'|)-
PROOF. The relationship (4.3) and Proposition (6.2)

lead to
[31_ _1.031 .1 [3+11 |1 R (31
R1(A)A1f = Af -+7R1(A)A1f n+7R2(A)T (M) £
for j=0,...,k. A recursive substitution for j=0,...,k vyields
K 521,051, k-1 [k+1]
R1(X)A1f == 7 A f + A R,(x\)a_f
.= 1 1
J=0
ko _._q) R [5]
+ ¥ A7) Ry(M)T (V)£
J=0
We integrate along the curves Fv and obtain
' 1 k -j-1
£f=- v (res R)A£+5 [ T A7) R, (1) *
n€o (T)Nintr s “lrv j=0

(6.6) 3

*TR(A)f[?]dx-+§%I,fx'k'1R1(x)A1f[k+1]dx.
r

N v
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The calculation

k . : k ¢q —— -
j=0 j=0 r=0

q k-r+1 _a .
> v Z I3 1TRf[J]

r=0 j-r+1=-r+1 r

g  k-r+1 .z
5 v a7

r=0 j=-r+1

Rf[j+r~1]
r

k+1 _- min{qg,k-j+1} e
5 \~3 3 Tif[j+r 1]
j==q+1 r=max{0,-j+1}

0 _-min{qg,k-j+1} o
5 \o3 5 TRf[j+r 1]

j=-q+1 r=-j+1 T

k+1 _. min{g,k-3+1}

+ ¥ a7J » R.[j+r-11
. T £
=1 r=0 r

and (6.5) yield

a-1 .
— - J
f = > { (resuR1)A1f-+resk=u<R2(A) 2 oA x

uEa(T)ﬂintR, =0

min{qg,k+j+1} o k+1 -
r=j+1 I, j=p"+1

min{qg,k~j+1} [
o j+r-1] 1 -k~-1 [k+1]
dA'FEFI#'A R1(A)A1f dx.

v

* R¢
X

r=0

Thus the regularity of T proves the theoremn.
(6.7) REMARK. Let max{q,g+p"} <k +1. Then (6.5) reads

q 41—
6.1 I rie* oo (3=1,...,p")
r=

and
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£ = 1lim > {—(res R1)A1f
v u€o (T) Nintr, .

q-—

1 . g _a
+res)‘= (RZ(A) T oad )N T?f[r J 1])}.
" j=0 - r=j+1

7. n-TH ORDER DIFFERENTIAL EQUATIONS AND FIRST ORDER
SYSTEMS
Let piGEH(E,Lw(a,b)) (i=0,...,n~1), pn==1. We define

n ’ ,
(7.1) LD(A)n:=_Z pi(-,x)n(l) (n€H_(a,b), 2€L).

i=0

Let m> 2, a=a,<a,<... <am=b, W(J) EH(([,Mn((I)) (3=1,...,m),

WEIH(E,Mn(L1(a,b))). We define

n(aj) b n(g)

R e
(7.2) Lo(M)n:= Z w3l o) o + [W(g, ) : ac
j=1 - a :
n (P ”(aj> n (A1)
(n EHn(a,b), Xel). We set
_ D R
(7.3) L(M)n:=(L"(X)n,L°(A)n) (nEHn(a,b), Y EL)

and assert

(7.4) PROPOSITION. i) L€H(C,®(H,(a,b),L,(a,b)xC")),
ii) ind L(x) =0 (ref).

The proof of (7.4) is similar to the proof of (2.4) and
thus omitted.

We want to apply the results of the foregoing sections
to the differential-boundary operator L. Therefore we set

(0] 1

A . .

(7.5) A(x, ) := o . ..
0 1
"pO(X,)\)---"Pn_1 (X/A)

and define

~D ~ —N'—A ~ ~ n
(7.6) T"(N)y:=y'-2a(.-,)\)y (yEﬁH1(a,b), YEQ)
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and

. b |
w3 (VT aL) + Wi, MNT () dE.
1 J a

(7.7) %Rm?::’
j

nMs

Proposition (2.4) holds for T .= ("i"D,"i"R) and the operator func-
tions L and T are "equivalent" in the following sense:

. (7.8) THEOREM. A. Let n€H(0§,Hn(a,b)) be a root func-
tion of L of order v>0 at u€(l. Then

(n-1)
| N

r

18 a root function of T of order v at u.

B. Let ?EH(@,H?(a,b)) be a root function of T of order v>0

at u. We set (?1,...,§n)t:=§t and
v-1 . 3j
o = T sroen (455 ).
j=07* dx

Then n€H((I,Hn(a,b)) 28 a root function of L of order >v at

(1) —§i+1 EH((I,H1(a,b)) (1=0,...,n-1) has a zero of

order >v at y.

u, and n

A
PROOF. A. From the shape of the matrix A we infer

o]
(7.9) 7o = °

P ()n ()

FRF() =LR()n(x)  is clear from the definition of TR and

LR. This proves A.

B. We set
v—1

. j~
ni(~,>\) :=j§c_)—j=1—!(A-u)]<§)‘—jyi>(-,u) (i

It
-—
-

.,n).

Note that n =n,. The functions
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ND ~
A Fon,

= Y1) = ¥ ) (1<i<n=1)
and
D~ - n-1 -
EMF0, = T30 +. T py (-, 0F;, O0)
have a zero of order >v at

u. Hence
' 1

i T Mi41

Thus we have n(l)

(1<i<n-1).
=n;4q (121<n-1) which proves that
r1€Hn(a,b). We conclude from the definition of
n(1) ~

TYi41 T V1 T Y549

ni+1 that
u. This proves that

(0O<i<n-1)

has a zero of order >v at

n-1
tP()n0) =

wf @) v (1) 0y o
n W=7 )+ T ConfaP -, o
i=0

has a zero of order >v

at u. In the same way we obtain that
n(A)=¥, ()
tRon ) = FRFm +TR 0 :
' (n-1) >

n A=y, (2)
has a zero of order >v at u. Finally n(u) #0 because
n(w) =0 would imply ¥, (w =n"" (=0 (1=1,...,n) whicn
contradicts Vy(u) #0.

Then 3;1

(7.10) COROLLARY. Assume that in (7.8)B §1€H(E,Hn(a,bn
18 a root function of L

of order > v(Y)
The result is obvious since n-§1
>v(y) at

at .
has a zero of order
He
L_1 (X) can be expressed in terms of 'f-1 (2):
(7.11) THEOREM. Let A€p(L), £, €Ly(a,b) and £,€0",
Then X€p(T) and
o
o) (£,,8,) = STy || £,
0
f1
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where e, 18 the first unit vector~7ln (R

PROOF. Assume that X € p(T). Then there is an eigenvector
y of "f(x) since, with (2.4), "i"(xl) is a Fredholm operator with
index zero. With (7.8)B, the first component Y4 of y would be
an eigenvector of L(A). This contradicts i € (L). We set

<
I
=14
=
FhQoeee O
T-n
N
3
i
<
—

We have to show n EHn(a,b) .and L(A)n= (f1,f2). From the defi-
nition of '37 we obtain

0O

7=

Hhy O oo

Hence §i=§i+1 (i=1,...,n-1), which proves nEHn_(a,b), and

LD(A)n=f1. The equality LR(A)n="i"R()\)§'=-f2 is also clear.

For M €p(L) and f1 €L2(a,b) ’ f2 €™ we define
A -1
(7.12) R1(A)f1;=I. (A)(f1,0),
(7.13) R, (A\)f. ;=L
. 2(>\) 2 =L (A) (O,fz).

Let Y(-,X) be a fundamental matrix of "I"D(A)y=0 and define

r E _ )
J elvix,m 1H)dtlr‘(t,x)sr(t,mf Yene
t=a n
A . (a<g<x<b)
(7.14) G(X,E,)\) 1= ¢ 62 X2
P t -1 -1
- J eT¥(x, )M (M)A F(E, )Y (£,)Y (g,
t=£ n
| (a<x<g<hb) ,
(7.15) aR(x,A) .= efY(x,x)M'1(A),
AL
G

is called the Green's function of L. From (4.9) and (7.11) we
obtain

(7.16) COROLLARY. For f €1L2(a,b), £

: €C® and

2
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A€ p(L) we have

b

A A
i) (R, (M) £,) (x) =IG<x,£,A)f1(s)ds,
a )
. A _A
ii) (Ry (M) £,) (%) =Gp(x,2) £,,

-1 b, A
iii) (L (x) (f1lf2))(x) =£G(x,£,>\)f1(£)d£.+GR(x,)\)f2.

Now we shall construct a biorthogonal canonical system

of root functions of L and L*. For this, let z1(-,A),...,
zn(-,x) be a set of fundamental solutions of LD

that

(7.17) Y(+,) :=(zj§i‘”(.,x))’.‘

i,j=1
is a fundamental matrix of TD(A). We may suppose that
Y €H(E,Mn(w1’m(a,b»), cf. [28]. The matrix

M(X) = (LR(A)zj(',A))?=1==TR(A)Y(.,A)

is called the characteristic matrix of L(1).

(7.18) THEOREM. Let u€o(L). Let {c1,...,cr} be a
CSRF of M at yu and {d1,...,dr} be a CSRF of M* at y.
Suppose that the biorthogonal relationships
4

1
ooy ) L =
dAl<( u) Mci,dj>(u) 6ij601

"

1!

(C)51.5n5-1; i,3=1,...,r) hold where m, <8 the multiplicity
of c,- We define

ng () i=efY (-, Me, (V) (i=1,...,r; r€C)
and
Lt t -/ ()t
£ M) (%) s=e Y7 (x,2) (j§1y (aj,x)w (”x(aj,'b) (x)
X
+jyt(s,x)wt(g,x)de:)di.(x).
a
We set

(A). This means
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Ly = (Ei,di) (i=1,...,X).

Then {n1,...,nr} i8 a CSRF of L at u, {g1,...,cr}
is a CSRF of L* at u, v(nj) =\)..(cj)'=mj (3j=1,...,r), the bior-
thogonal relationships

1 at -mj
(7.19) 8 _<(.=u) ALn,,5.>(n) = 6..6
l!djl i"?3]

ij ‘ot
(o_<_15mj-1 ; 1,3=

=1,...,r) hold, and

L -

3

MR

—ml
o- Jn. .
1( u) nj®cj

is holomorphic at u.

PROOF. According to Theorem (2.10) we define the root
. ~ ~ ~ = ~ ~*
functions vy, of T at u and v (ui,di) of T at u

. T t~ t~ .
(i=1,...,r). We have Ny =eqy; and ;.;=(enui,di) (i=1,...,).
Wwith (7.17) and (7.10) we obtain that ‘ﬂ1r-~-ﬂH:€H(¢:Hn(a,b))
are root functions of L at u with v(ni) Zv(yi)==m.

(r=1,
...,r). Let

n € H;.l(alb)

and set y v=(h,n',...,n(n_1))t
the aid of (7.9) we infer

. With

<n,L* (A)ai(k)>(Hn(a,b) , (Hn(a,b)) ")

=<L” (M) n,e u; (A)> (L, (a,b) ,L,(a,b))

+<LR(A)n,di(x)>mn ")
=<TD(

o~ ~R
X)y’ui(x)>(Lg(a,b),Lg(a,b)f+ <T (A)y,di(x)>(cn’¢n)

= <y,T*(A)Vi(A)>(H?(a,b),(H?(a,b))') :

Hence
dl
<n’E_T(L*Ci)(“)>:=O (l==O,...,mi—1).
A
This proves
dl
- (1,% = = -
dxl(L Ci)(u) 0 (1=0,...,m, 1)

since r|€Hn(a,b) is arbitrary. Thus 5y (i=1,...,r) is a
root function of L*

of order >m, u. By (7.17) and the

at
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definition of g;i we have §i= (ni,ni,---,nj(_n—”)t- Thus the

above calculation leads to

<LOIn; (e (0> = <M (0),¥,00> (4,3=1,...,1).

This and (2.12) gives the biorthogonal relationships

1 dl -m;
—_ L (.- i = .
“dxl<( u) Lni,cj>(u) 6ij 551
(0<1 Smj—1; i,j=1,...,xr). The theorem is proved on the basis of
Theorem (2.10) in [28].
We conclude this section with a technical result which
we will need in the next section. For a distribution u€ ' (R)
let urEJJ' (a,b) be its restriction to (a,b), i.e. <Q,u > =<, u>
-] 4 | - '
(p € Co(a,b) ). Obviously ul (u )r'

(7.20) PROPOSITION. Let k,1 >0, pi€Wl+k’°°

(O<i<l), pl=1 and z;ELz(a,b). Assume that

(a,b)

= (1)
> (pi‘”r € H
i=0 *.

Then [ € Hk+l(a’b) .

k(a,b).

PROOF. For 1=0 nothing is to be proved. Let 1 >1
and assume that the statement holds for 1-1. Assume that
;¢ €H,  ,(a,b). Then there is a 0<Jj<k+l such that
z €Hj(a,b) \Hj+1 (a,b). Let 3Jj' :=min{j,k}. Then

(l§1< ) - L o) - (b o) en., (ab)
iZo pi+1§ r iio Pi§ r POC r jl a,
whence

1-1 (i)

iEO(PiHC)r €Hj.+1(a,b).

By assumption we have ¢ EHj,+1+1_1 (a,b). If 3j'=3j, we obtain
the contradiction ¢ €Hj+1 (a,b). Hence 3j' =k and we cbtain the
contradiction ¢ € Hk+1(a,b) .

A similar proof leads to

(7.21) COROLLARY. Let k,1>0, p; € ci+k[a,b] (0<i<l),
pl=1 and c€L2(a,b). Assume that
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1 .
5 (p.2) ) ec®ra,pl.
. i*’'r
i=Q
Then ;€Ck+l[a,b].
Note that we have ¢ EHk+l(a,b) Cco[a,b] for 1>0
by (7.20).

8. THE ADJOINT L* AND THE CLASSICAL ADJOINT L+

By [25], Ch. 1, Th. 2.2, there is a continuous linear
map <t :Hn(a,b) »Hn(lR) such that =tfl f for all
fe Hn(a,b) . ‘The Sobolev .space

(a,b)

H n(lR) :={

a i (i)
i};o(—ﬂ vy :viELz(IR)}
is a representation of the dual space of Hn(IR) with respect to
the bilinear form

e g (1)
<9V (R),H_R) T BT VT, (R) L, R))

where

<f,h> := [f(x)h(x)dx ,
(LZ(R),LZ(R)) R

cf. e.g. [1], Th. 3.10 and Cor. 3.19. We set
H__n[a,b] 1= {v€H_n(]R) : suppvecla,bl}.

(8.1) PROPOSITION. H_n[a,b] is a representation of the
dual space of Hn(a,b) with respect to the bilinear form

<y , V> =

'=<Ty,V> .
(H_(a,b),H__[a,b]) (H_(R) ,H_ (R))

For n=1 this proposition is Proposition (4.2) in
[28]. The proof of the general case is analogous and therefore
omitted here.

We consider LD(A) which has been defined in section 7.
Let n €Hn(a,b) and ¢ €L2(a,b). We obtain

Dx
<n,L (M) g>
(Hn(a,b) H_ la,bl)

_ D
= <L (A)n,z> (Lz(a’b) ,Lz(a,b))
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(1)
%% (L, (a,b) ,L, (a,b))

n
Z <Pi('1)\)ﬂ

i=0
- %< o e
Lo i (L, (R) ,L,(R))
= T D, o o0a B B e
i=0 n '“en
- T =Dien, o, onp B :
& i (H_(a,b) ,H__[a,b])

This proves

n . , -
8.2  tP*ooe= T -0t e (z €L,(a,b))
i=0

where the derivative is taken in ®'(R), the space of distribu-
tions on R. For nEHn(a,b) and dE(Ln we infer

R* _ R

LNy (a,p) 8 la,p]) T W INed>(gh gh

n , n(fflj) b n(g)

= <.Z W(J)(A) : +fW(g, ) : dg,d>(¢n’¢n)

j=1 (n-1) a _1
n (aj) n(n 1)(5)

n-1 m . n-1b

- (k) t (3) t (k) t .. t

= Y I n (ay)e, W2/ (A)d+ XL [n (8)e,, W(g,A)"d dg
k=0 3=1 j° Tk+1 k=0 a k+1

n-1 m kK t

- - (3) (1 ytas (k)
= Zo B TN ey T ) TRy >y (a,b) B [a,b])

n-1
+ L oan, 0¥, W

o % (u, (a,b) ,H_, [a,b])

where ey is the i-th unit vector in (€% and (k) denotes the

k-th derivative in the sense of distributions. Hence, for (i€¢n,

n—1 m .
(8.3) LR*(A)d=kZ (—1)ke;i+1( Z1w(3) (A)tdéé]j{) s w05 (k)d).
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Next we consider a two-point boundary value problem

- n .
t’() = I p, (-0t
i=0
(8.4) 1 n(é) n(?)
tRogn =w? () : + WP (\) :
L n (071 (4 n (01 ()

(n EHn(a,b)) where rank(Wa(A),Wb(}\)) =n for all x€l. We in-
tend to prove that there is an invertible matrix Q(X) EMZn(([)

which depends holomorphically on A such that

[wa(x)t X(x)}
(8.5) Q(x) =
Pt o

with suitable X,'ﬁGH(E,Mn(ﬂi)). .

(8.6) LEMMA. Let k>12>1, aj’eH(ﬂ:,ﬂ; ) (3j=1,...,1)
and assume that a1(>\),...,al()\) are linearly independent for
all xeC.

Then there are a:.l EH((I,(Ik) (3 =1+1,...,k) such that
a1(>\),...,ak(>\) are linearly independent for all xE€C.

PROOF. Set

).

A= (a1,...,a:L

Then AEH((I,Mk l((E)). With respect to the decomposition
7

¢k=¢l®¢k_l we write At=: (AO’A1)' Since rank A()A)=1 for all

A €L, we may assume without loss of generality that rank AO(AO)
=1 for some >\O€ﬂi. Thus the function detA, is not identically
zero. Let BO(A) be the transpose of the matrix of the cofactors
of Ao(x). Then B is holomorphic and fulfills

O
AOBO= (det AO) Il.
Let c€ {0} x (Qk—l\{'o}) and define zEH(@,Ek) by
B.(A) =B. (M)A, (X)
z(2) :=| © SR c (AeC).
o) (det Ay OO I, _;
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Then 2z %0 since the matrix

By(A)  =By(M)A, (1) }

o (det A (NI, |

is invertible iff det AO(A) #0. For all 1€l we have

B (A) =B (M)A, (1)
At(x)z(x)=(AO(A),A1(x))[ © o c
O (deta, (NI,

= ((det A, (AN I,,0)c =0.

By Weierstrass' theorem there is a holomorphic function y :(-(
such that the set of the zeros and their multiplicities coincide
for Yy and z. Hence

a. . :=Z
1+1 ° vy

is a holomorphic function. From () #0 and

81+1
a0 en@atm)) = @Mt

we see that a1(A3,...,al+1(A) are linearly independent for all
A € 0. The statement of the lemma follows by induction.

The idea of the above proof can be found in Wedderburn's
article [36] on page 331. The authors thank H. Bart who drew our
attention to Wedderburn's article. H. Bart also told us that the
lemma follows from a more general result of Bart [2], Theorem
2.1 on holomorphic left. inverses and a result of Saphar [31}],
Proposition 14 on global holomorphic bases.

From now on we additionally assume that the coefficients
p; imn (8.4) belong to H(C,W '®(a,b)) (i=o0,...,n~1). For a
fixgd »€L we define the linear operators 1(\) and l+(A) in
Lz(a,b) by

D(1(x)) v=Hn(a,b)
2 (i)
1l(A)n := Zpi(-,ﬂn (neHn(a,b)),

i=0

D17 (1) :=H_(a,b),
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n . .
1" i= ¢ (—1)1(pi(-,x)c)(l) (z €H_(a,b)).
i=0

Integrations by parts yield that there is a matrix H(A)EEMZn(Q)

such that for all n,t EHn(a,b)
(8.7) Atr(n g =

<+
<1(A)“'§>(L2(a,b),Lz(a,b))._<n'l (A)C>(L2(a,b),L2(a,b))

where
A @)y e ™ @m0y,

e Lt O S B L D TS B

is invertible (see e.g [29], p. 9 or [7], p.
A. By Lemma

The matrix H(X)
288) and obviously depends holomorphically on
(8.6) there is a matrix function of the form (8.5) which is in-

vertible for all 1 €. We define

() D(x)
(8.8) :

[wa(x)t X(A)}"1
- N H(A) ,
WO - PO

Wt B

where the matrix on the left side is divided into nxn-block-

matrices.

We define the operator LO(A) in L2(a,b) by
(8.9) D(LO(A)) :={n EHn(a,b) : (wa(x),wb(x))ﬁ=o}cLz_(a.b)
and .
(8.-10) Ly(A)n :=1(x)n (n €D(Ly (A,

and, analogously, the operator LS(A) in L2(a,b) by

(8.11)  D(LI(M) :={z €H_(a,b) : (W (1), # (1)L =0}cL,(a,b)

and
(8.12)  rlr:=1"¢ (z €D(LI (.

Since C:(a,b)<:D(LO(A)) is dense in L2(a,b), the adjoint

Lo(A)* of Lo(k) is a well-defined operator on D(Ly(X)*) <

L2(a,b) to Lz(q,b).
(8.13) PROPOSITION. For ¢ €I?(a,b) we have

C €D(Ly(A)*) iff there is a det® such that L* (A\)(c,d)€L,(a,b).
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For such ¢, 4@ we have LO(A)*r,=L*(>\)(C,d)-

PROOF. Let n €D(Ly(})) and £ €L,(a,b), aet™ such
that L*(1) (g,d) €L2(a,b). By definition of D(LO(A)) we have
LR(k)n =0. Thus we obtain

LoMIMe> (g (a,0),1,(a,b)) T HA N (@ (2,0, 1, (a,b))
= <LD(>\)n z> +<LR(>\)n d> N an
' (L, (a,b) ,L, (a,b)) '& (g, 0™

<L(A)n, (c,d)>(L2(a,b)xmn,L2(a,b)x@n)

= <n,L*(}) (C:d)>(Hn(a,b),H_n[a:b])

<n,L*()) (c.d)>(L2(a,b) yL,(a,b))"

This proves J;ED‘(LO(A)*) and LO(A)*;=L*(>\)(«;,d).
Conversely, let ¢ ED(LO(X)*) . Then there is a
L* € L2 (a,b) such that

<Lo(x)n,c>=<n,c*>

for all n€D(LO(>\))- Hence, for all hED(LO(A))

D
O = <nt*> (1 (a,b),L,(a,b)) - T W@ (a,p), 1, (a,b)

D%
* -
<=L 0>y (a,b),H_ [a,b])
n n
Since LR(A) is a finite dimensional operator, the range
R(LR*(A)) is finite dimensional and thus closed. This implies

=N(LR(A))'L(Hn(a’b) +H_,la,b]) =R(LR* (A))

cf. [18], p. 234. Thus there is a de€t" such that q*—LD*(A)c
=L®* (\)d which proves c*=1P* ()¢ +1®* a=1x0) (¢,4q).
(8.14) REMARK. The element d€C" in (8.13) is unique.
PROOF..Let d, €C" such that ¢*=L*(})(¢,d) =
L*(A)(c,d1). Then

L od, = o -2 e = X oo
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Hence, by (8.3),

n-1

0= 1

Lokt (ea, it e (K) £ e (k)
I ek, (00 @6 4w ) F @,

-1 -1 -1¢ (n=1
The elements ,6b,...,(—.1)n éa(ln ),(-1)n éé ) EH__n[a,b]
are linearly independent, whence

{Wa(“t}(d1 -d) =o.
Ut
From rank(wa(x),wb(x))=n we infer d1=d.
(8.15) THEOREM. i) Lg()\) =LX (1),
1) (LSO * =L (). .
PROOF. i) Let nED(LO(A)) and cED(LO(A)). We infer

+ At A
<Lo(A)n,z> = <1(M)n,5> = <n,1 (M)g>+n H(A)Z.

By the definitions (8.7), (8.8), (8.9) and (8.11) we have

Wt ;) By .
(8. 16) %‘tH<A)2'=ﬁt{ b, .t o N~a ~b }ez (0'*)\ ]=°'
W (X)) B()) [_W (x) W (A) O

Thus
+
<LO(A)n,c>=<n,l (X)) >

which proves cED(LO(A)*) and L (X)* =1+(A)c=L+(>\);.
Conversely, let ¢ € D(L (A)*). Then we have to ‘prove

4 ED(L (x)). By 1(8.3) and the spec1al choice of the boundary con-

dltlons (8.4) we conclude that (L (A)d) =0 for all de€C”

‘Hence (LD*(A)c)rGLz(a,b) by (8.13). From (8.2) and (7.20) we

infer ¢ EHn(a,b). For n EHn(a,b) we obtain

Dx*x
< L e> =<l(\)n, >
(8.17) (Hy(a,b)H_,la,b]) (L, (a,b),L, (a,b))

+
=<n, 1 ) o> +8%H (0 2.

(Lz(arb) ILz(alb))

The definition of 7" and (8.8) give

n-1
(8.18) "tH(07T = <n,< z (-1)K k+1(w (A) a(k) +WP () 6(k)),
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n-1 Sy B
k_t o~ (k) | ~ (k) A
L (-1)"e (A())6 +B())6 )) T>.
k=0 k+1 a b {Wa(k) ﬁb(x)}

Let de€C”. By (8.3), (8.4), (8.17) and (8.18) we infer that

n-1

r

oo

+ _ _\ K
L¥ () (z,d) =17 (Mg = T (-1)%ef,

k=0

(8.19)

A

*{(wa(x)t(E(A),6<A))2+K<A)(Wa(x),Wb(x))2+wa<x)td)6;k’

L‘*(Wb(K)t(E(A),ﬁ(A))2+§(A)(Wa(k),Wb(k))2+Wb(A)td>6ék)},

Now let us choose d according to (8.13). Then L*¥ () (¢g,d) -
l+(A);€ZL2(a,b) and thus also the right side of equation (8.19)

_4yn=1,.(n-1)
belongs to Lz(a,b). The elements éa,éb,...,( 1) 6a

(_1)n—16én-4) € H_n[a,b] are linearly independent and

1 o % 0o g

n-1.(n-1) ,_, . n=1.(n-1) _
span{éa,éb,.",(-1) 6a , (=1 6b }nLZ(a,b)~—{0}-
Therefore
[wa(x)t K(A)} T B ], w2t
. T+ d = 0.
woot oo ll#o) # o WP () ©
From

Ry ® 0y

[wa(x)tJ [wa(x)t X(A)][In}
wP (ot Wt T llo

we infer
@0, ot = —(o,xn)[gn]d =0

N N )y D
W0, 0)) = (0,1 ){ },

which proves ;EZD(LS(A))-

ii) For r]EHn(a,b) we have
n A R . .. .
Mon = £ oenty (;)(-1)3(p‘1'3’(-,x)n)‘J)

i=0 j=0 1
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Hl

n A R A B .
y -nt ey (*)(-1)3 > <J)p?1 k) (LB
. . j X i

i=0 J= =0 k
zx 1(i)plak) (k) & (qyd (LK)
n (k)
= Z p (',K)n\
k=0 %
since
L - : i~k L.
~13J (l—k)! T _ k _ ](l‘k) - _ k ‘

This proves l++(k)==l(x). From (8.7) we infer

++
MeamHr = At =<z, 17 000>,

and (8.8) leads to

Kt Bt [@mt T .
=l e+ o x| HONT
W (x) D(x)

Wy -wE ()

Hence we. have Lg+(x)==LO(A). And finally, we apply
part i) to Lg(x) and obtain (LS(X))*==LO(X).

(8.20) DEFINITION. Let n EI{(E,Hn(a,b)) and p€fl. n
is called a root function of LO at uw 1iff n(u) %0, (}n)(p)==0
and (Wa(u),wb(u))ﬁ(u)==0. The minimum of the orders of the zero
of 1n and (Wa,wb)ﬁ at u is called the multiplicity of n.
From ln==LDp and (Wa,Wb)Q==LRn, we obtain o ¢
(8.21) REMARK. Let n€H(L,H (a,b)), w€C and v EN.
Then ‘' n 1is a root function of LO of order v at u 1iff n
is a root function of L of order v at u. v

Canonical systems of root functions of LO arevdefined
in the same way as for L. Hence a system of root functions is a
canonical system of root functions of LO at u iff it is a
canonical system of root functions of L at u.

The situation is different for L{=1% and L*.

(8.22) PROPOSITION. Let (z,d) €H(¢,L2(a,b)><¢n) be a
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root function of L* of multipliecity v at u. We may assume
that ¢ 1is a polynomial of order <v-1.

Then ¢ €H(C,H (a,b)), ¢ <s a root function of Lg of
multiplieity >v at u and d-+(8,8)2 has a zero of order >v
at u.

PROOF. By assumption

v=1

c0) = T (-w)ieg (€0
i=0

where ci.€L2(a,b). First we shall show that Ci.EHn(a’b)' For
this, define

i
a. :=—.1—(—(-1—id)(u) (i=0,...,v=1).

Since (¢,d) <is a root function of L* of multiplicity v at
U we have
i 1 dj
* == 5 | = _T.% i = -
(8.23) L (u)(ci,di) ji1j!(dAjL )(u)(ci_j,di_j) (i=0, e ,v=1).

Especially L*(u)(co,do)==0. By (8.13) and (8.15) we have
+
Lo € DLy (1)) <H (a,b).

Now assume that torec-rbyj_q €H (a,b) for some i<v-1. From
(8.2), (8.3) and (8.4) it immediately follows that the restric-
tion of the right side of (8.23) to &'(a,b) belongs to
L,(a,b). Hence (LP*(u)z,) = (L* () (¢;,d,)) _€L,(a,b). By (7.20)
we obtain ;i_EHn(a,b).

Since (g,d) is a root function of L* of multiplicity
v at u, we see that the Taylor coefficients of L*(;,d)-—l+;
at u are in Lz(a,b) up to the order v-1. As in the proof of
(8.15) we see that

t "~ G "~ t
w X|[¢ B, [w
t ollea b6} bt]d
W g% WP WP
has a zero of order >v at u. From this we conclude that l+c

has a zero of order >v at . Continuing as in the proof of

~a ~b. A
(8.15) we see that (wa,wb)c has a zero of order >v at .
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Finally we obtain that

Wat Wat
~ r~ A
tl(C,D)g + t|d
{wb } [wb ]

has a zero of order >v at up. This proves the last assertion
since (Wa,Wb)t is injective.

(8.24) PROPOSITION. Let ¢ Eri(E,Hn(a,b)) be a root
function of Lg of multiplicity v at u. Set d F=-(E,S)2.

Then (g,d) s a root function of L* of multiplicity >v at .

PROOF. By assumption, (Wa,ﬁb)e has a zero of order Z“‘
at . Hence this also holds for the term on the left side of
(8.19) by the definition of d. Because of the equation (8.19)
the assertion is clear.

(8.25) PkOPOSITION. For x€C@, L(X) 18 bijective Tff
Ly(A) is bijective, and LO(A)_1f=L_1(>\)(f,O) for A€o (Ly)
and f€L2-(a,b).

PROOF. Let LO(A) be bijective. Then L{(X) 1is injec-
tive by (8.21). Hence L{)) 1is bijective since 1indL(Xx) =0 by
(7.4). Conversely, let L(A} be bijective. Then LO(A) is in-
jective by (8.21). For f€IL2(a,b) we have n 5=L—1(A)(f,0)€
H (a,b), 1()n=0()n=f and @w*0),w>(1))n=L8(1)n=0. This
proves that LO(A) is surjective and that LO(A)-1f==L-1(A)(f,O).

. _ n .
A mapping Y"(Yi,j)i,j=ﬂ EH(Q,Mn(LZ(a,b)) 1s‘called a
holomorphic fundamental matrix of L or 1, respectively, if

Y, 1(A),...,y1 n(A) is a basis of N(LD(X)), and if
[ r

(i-1)

Y (X) =(y1lj(A)) (i=2,...,n; j=1,...,n).

i, ]
Obviously, Y 1is a holomorphic fundamental matrix of L iff ¥
is a holomorphic fundamental matrix of %D. We set

M(2) :=LR(x)e$y(-,x) =wd ()Y (a,\) +W(A)Y(b, ).
We have

0 (Ly) =0 (L) =o(T) =0 (M).

We assume that p%LO)=t¢. The function
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( e?Y(x,)\)M-q()\)Wa()\)Y(a,)\)Y-1(E;(A)en

A (agg<xg<hb)
(8.26) G(x,g,)) =

-e?Y(x,A)Mh1(A)Wb(A)Y(b,X)Y—1(€,A)en

(a<x<gg<h)

() € p(LO)) is called the Green's function of Lo.
(8.27) PROPOSITION. Let A Ep(LO) and f€IL2(a,b).

Then
-1 b/\
(Lo (A) ) (x) = [G(x,£,A) £(£)dE.
a

PROOF. This follows from (8.25) and (7.16) since the
functions é defined in (8.26) and (7.14) have different values
only for &£=a and g=b, i.e. on a zero set.

(8.28) THEOREM. Let vy € o(LO) and let {n,

1,h:
Ost15n&—1} be a canonical system of eigenvectors and associated

1<i<r,

vectors of LO at u.

Then there is a canonical system of eigenvectors and

. - +
assoctated vectors {r, h.1<i<r,0<h5mi--1} of L at u

0]
such that the prznczpal part of G(x,g,-) at uw has the form
r M7 . J
(8.29) L oL =™ E g ey ).
r ’

i=1 j=0 k=0

If w®  and Wb do not depend on A, then the biorthogonal
relationships

k

(8.30) kzok—,j< kwlh>(x Wy o (x)ax =6

ij 6mi—h,m
(1<h<m; O<smsm,-1; i,5=1,...,r) hold where
m, -1
r m-h
wlh( I>\) -—“l(}\) nlgo (A—U) ﬂi’m-

PROOF. We set
m,~-1

. h
ni(A).— (A=u) ny

h=0 'he

T
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{nqreeermy } is a CSRF of L at u by (8.21). By [27],(2.1),
cf. also (2.7), there are polynomials (ci,di) :¢-+L2(a,b)x¢n of
degree <m, such that {(c1,d1),...,(cr,dr)} is a CSRF of L*
at u,

._1 r -1 2
(8.31) L - ¥ (--u) 1ni®(ci,di)

i=1

is holomorphic at u and the biorthogonal,relationships

m
1.4 _
(8-32) ;n—!g;l_n<wlhl(cjldj)>(11) = 6ij 6m-h,m
i
(1<hz<m; Ofmgmj-h i,j=1,...,r) hold where

~

wih = (o—u)—h ni. By (8.22), ;1,...,1; are root functions of

1y at w and ;) + (€0, Bu) e, (0 =0, ieew Ty seenst ()

are linearly 1ndependent This and (8 24) show that {c1,...,r,r}
is a CSRF of LO at u. We set
.-1

g, (A) =: Z (A= WP 5y (1=1,...,1)
h_
and infer that {; h '’ :1<icg<r, O<h<m -1} is a canonical sys-
tem of elgenvectors and associated vectors of Lo at u. By
(8.25) and (8.31), the principal part of LO1 at u 1is egqual to
the principal part of

r —-m-,‘
r (e=u) 1‘n- Dz,

i=1

at u. (8.27) yields that the principal part of G( ,E,0) at wu

is

m,-1 .

r i j—-mj 1 3

> vo{A-u) 1 (n (x,°)z. (E,)) (0)

i=1 j=0 EEPTE +
r mi_'1 .

= T ¥ (- L ng g (X)T; (£) .
i=1 3=0 R T

a b
If W and W are constant, then LRni is a polynomial of
order 5mi—1 and has a zero of order 2>m, at p. Hence LRni=O

for i=1,...,r. Thus ¥, = (v, ,0), and (8.32) leads to (8.29).
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Now we additionally assume that Py € H(C, C [a,bl). wWe
A
define LO :=L O ch [a,b] and LO "-LOIC [a,b]" A chain of an

eigenvector and associated vectors of Lo at p €l obviously is

a chain of an eigenvector and associated vectors of LO at u.

v—1} be a chain of an eigenvector and

associated vectors of LO at uy. Then

Conversely, let {no,...,n

i g3
1 .
L (u)n-=-Z—,(-—ﬁ-l)(u)n : (1=0,...,v-1).
R S e EERFTE -3 ‘

By induction we obtain niEICn[a,b] (1=0,...,v=1) from (7.21).
From (8.27) we obtain

b

oM D ) =[x E(B)aE (€o(xy), fec(a,bl).
a

(L

In particular we have p(£0)==p(Lo). (8.28) yiilds

(8.33) THEOREM (Naimark). Let yu €o(L ) and let
{nl T <i<r, O<h<m, —1} be a canonical system of eigenvec-
tors and associated vectors of L . at u. Then there is a canon-

0
ical system of eigenvectors and associated vectors

A
{cl piltsizr, Ofl\fn&-1} of Lg at u such that the prin-
cipal part of G(X,E,') at u has the form
m. =1 .
r i e,
(8.34) Lo 0= By eoeg S ().
i=1 j=0 k=0 1=

If w®  and Wb do not depend on A, then the biorthogonal rela-
tionships

mo b dk
(8.35) L o) (— X, dx = 6,.. 6

L EoK! £ L i) ey o (x)dx = 6, m;~h,m
(1 <h<mi; Ofmsmj—1; i,3=1,...,r) hold where

m,.-1
1 m-h
lpih('r)\) :=l()\) Z (A_IJ) ﬂi m’
m=0 !

The foregoing theorem is stated in Naimark [29] on
page 41 without proof. For a proof Naimark refers to Kamke giving
the number [45a] of his bibliography. But Kamke was not concerned
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‘with theorem (8.33) either in his books or in his papers. There-
fore the authors believe that number [45a] may be a misprint. It
might be that Naimark wanted to refer to [34] in his bibliography,
namely Keldy3' famous paper on nonlinear eigenvalue problems
published in 1951. But neither this paper nor Keidyé' paper of
1971, cited here under number [47], contain such a theorem. It
might also be that Naimark intended to refer to Tamarkin, cited
in Naimark's book under number [110]. The papers which are cited
there under b) and c) do not state the theorem (8.33) in its
complete form. Since Tamarkin's doctoral thesis, cited under a)
in Naimark's book was not available to the authors, it could not
be determined whether the complete form of the theorem (8.33) is
to be found there.

9. ASYMPTOTIC FUNDAMENTAL SYSTEMS FOR Kn -AHn =0

We consider the differential operator
(9.1) L (1) =K - xH

where, for nEHn(a,b)

n-1 .
]Kn = r\(n) + 2 k~n(l),

i=o0 *

p-1 .
Hn = n(p) + L h-n(l),

i=0 *

ki,hi€Lm(a,b) and O<p<n-1. We set 1l:=n-p and

2m (3=1) i .
wj :=exp——IT-—(—i——-li (3j=1,...,1).

(9.2) THEOREM. Let k€N and suppose that
k >max{l,p-1} <Zf p>0O. Assume that

. k_. *
o) kjeLw(a’b) (j=0,...,n=-1-k) and kn_1_j€W Js (a,b)
(j=0,...,min{k-1,n-1}) <f p=0,
k, k-1,
8) ho,...,hp_1€W ®(a,b), ko’-"°’kp-1€W ""(a,b) and
k'—.lw : 3 2
Knoqoj €W 7'*(a,p) (3=0,...,1-1) <f p>O.

For sufficiently large p the differential equation
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Kn-—pl Hn =0 +has a fundamental system {n1(.,p),.__,nn(.,p)}

with the following properties:

i) There are a fundamental system {n1,...,n }<:Wk+p’w

(a,b) of
EWk+p-—lr,oo

Hn =0 and functions Tor (a,b) {1 SveEp, 1<r< [%]

such that
k
[I] 1r (u) k

(w) _(11) ~-1lr U -
(9.3) n, (eep) =a +r§1p nop Flolp 7)1
(v=1,...,p; v=0,...,p-1),
[k-u+E—1]
l - Lad -—

(v=1,...,P; ¥=pPse..,n=-1).

)

ii) Set ¥ :=min{k,k+1-p}. For r==O,...,E there are functions

L € Wk+1_r’°°(a,b) such that

a) @, 18 the solution of the initial value problem

n'-%m ~k__{)n=0, n(a)=1,

p-1 "n-
B) ) " %
(u _[ d ]{ - -r PWy,~ x}
.5 ,p) = | — vTP
(9.5) n,  (x,0) o rio(pwv'p) o _(x)e
¥ (0 (p KMy} oPOY-pX

(v=p+1,...,n; u=0,...,n-1),
u

where [11;] means that we drop those terms of the Leibniz
dx

expansion which contain a function wéj) with Jj>k-r.
PROOF. We denote the i-th unit vector in (7, t®, ¢

by e, Ei, £, - For i€Z~{1,...,n} or i€Z-~{1,...,p} or

i€Z~{1,...,1} we set e; :=0, €, :=0, ¢, :=0, respectively.

1

As in section 7 we consider the associated first order system

~ ~s ~J A ~J ~o
(9.6) Ty =5 -2,y (Y enl(a,b), r€0).
. A
In this case (9.1), the coefficient matrix A has the block
representation
t
A _ Jp €ps1
A('rl)- t t t
sla1(x) ala2-+Jl-+Asls1
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according to the decomposition ¢n=¢p@¢l, where

t -— -
(3.7) af () = Alhg,eeahy ) = (kgsennik
(9.8) al := -(k k)
) S IR NN
0 (1). o
J = .. EMr((I).
r o . 1
0
We set
1
st := 3 e§=(1,...,1)661,
i=1
Ql :=diag(w1,...,wl) R
A_(p) t=diag(1,p,...,07 ) €M (D),
1 ...
W .« e ®
V=£88t91-1___ ) 1
121 i 1 . . *
G- 1
)

It is easy to check that V is invertible,

) =: Aat +a

1
(9.9) v 1=% 5 Ql_kss]t
k=1
and
t t_i-1
(9..10) eV=¢ “1 (i=1,...,1).
We set
p'—']I p-1€ 8t911
(9.11) Clp) := P (p €C~{0}).
(0] Al(p)V
For p€C~ {0} and y€Hr11(a,b) we obtain
...‘] ~
(9.12) < ()T phc)y=y' -al-,0)y
with
0O O
(9.13) A(-,p) =T o7a_., A, = =:q,
j=—1 J 0O Q1
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(9.14) A =
O g cat b -x_ e, eetal!
1415211 T'p-1 " %n=-1""1 1
r t_1"J
0 n—1—j€p€‘Ql
(9.15) A= (3=1,...,1-1),
1 t . -1-3
L O 1kn—1—j9185 2,
t -1
—€pa12 kp_1€ps Ql
(9.16) A=
t 1 t -1
1981824, lk -1 8¢ Ql

For the proof of (9.12) we set

o 1 o I € st911
C1(p) = p , C, := P b

O Al(p)V O I
and obtain C(p)==C1(p)C2. A simple calculation leads to

;' (0)B(,0hc (o) =

t
Jp p€p81Al(o)V

-1.-1,. -1 t -1.-1 t 1 t
v aT e alteh v la] () (e as+T +o e £ AL (DV

From (9.9) and (9.10) we obtain the equations

t _ .tk -1 _
51Al(p)v-—e1v-—s ’ V ¢, =

-1,-1 1t -1 ty o
\ Al (p)(Jl-+o 5181)Al(p)V = pV (Jl-+5151)v =pf;

which yields the representation

-1 A
C1 (D)A(-,p)C1(p)

J 0 0 € ¢
p p

1 -1 t, 1 1 1-1 t
TP Ql£a1(p ) T° QleazAl(p)V (0] Q
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The assertion (9.12) follows from

t -1 t t -1

I -€_ e-q- o € ¢ ][1 € 0 O ©
p p- 1 P p I
(0] Il 0] Ql (0] Il (0] Ql
I —e_¢to7] J 0
p p 1 p .
1 -1 t, 1 1 1-1 t
o] Il 1° leaT(p ) TP Ql&azAl(p)V
t -1
Ip € ¢ Ql
* —
(0] Il
-1 t t -1 -1 t t -1 1-1 t
Jp P €pa1(p% €p_1£ Ql ) Epa1UH)€p€ Ql p €pa2AlM9V
7 -1 t, 1 1 -1 t, 1 t -1 11-1 t
1° Qlaa1(p ) 1° lea1(p )Epe Ql +Tp QleazAl(p)V

the definitions (9.7), (9.8), and the relationship (9.10).

By the assumptions a) and 8) we have
A_jeMn(wk'j'“’(a,b)) (3=0,...,min{k,1}). According to (9.13),..
.,(9.16) the coefficient matrix A(-,0) of (9.12) has the form
(3.1) with respect to p instead of . From theorem (3.2) we
obtain that y'-—A(-,p)y?=O has a fundamental system

k

(.17 viee) =( 2R e t0 0™ JB k0
r=0

K+1-1,%4,b))

if p is sufficiently large, where P[r]EZMn(W and

(9.18) E(x,p) =diag(l,...,1,e”91%, .., e?¥1%).

From (9.12) we infer that

9.19 n ¥ °
(9.19) (g, 00, v=1 7 Y(-,p0) == C(p)Y(-,p)

is a fundamental matrix of ﬁD(pl)§==O if p is sufficiently

large. We set
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ko _ _ Q. (erp) O (+,0)
(9.20) T L2 RS SO Ak 12

and obtain from (9.11), (9.18) and (9.19) that

~ t
~ Q14 re) +e ™D, ()0
Y(‘:D) =
oAl(p)VQ21(-,o)
(9.21) J
p-1x p, p-1 tools . p
E('ID)-
P - . P
We set n, v=n0,v. Then {n1”"’nn} is a fundamental system of
Kn -pan==O and n(U)=11 (v=1,...,n; u=0,...,n-1). We

v U,V
shall show that the N, have the properties stated in Theorem

(9.2). According to (9.20) we have

~ _ -r [r] -k L.
Qij(.’p)—rzj p- lj + {0 (p )}oo (1,3=1,2)

where the elements of Q[§] belong to Wk+1_r’m(a,b). We set
(r]
QlJ :=0 for r<oO.
We infer that, in the case we consider here, the
relationships (3.3), (3.4) and (3.5) are equivalent to the

following equations:

(ol _ _ t [0] [OJ

(9.22) Q13 (Jp D 11)Q =0y (a)-—Ip,
[O]'_j_ _ (0] _ [o] _

(9.23) Q55 l(hp_ kn_1)Q o, (a) I,
[o] [o]

(9.24) Q15 =0, 057" =0,

[rl'_ . _ [r] ) ~1 [r]
Q13" =(,m€ al ol "{ep—1 (b g7k q)€ }5 2 Q1

1

tg=1=3olr=31_ | t_[r-1]
+ k €

j2pm=1-37p° M1 7@ €p212917

(9.25)

(r=1,...,k),
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[r] _ 1. [r=11"_1 t _[r-1]_1 _ -
JQ21 =8 Q4 16411914 T(Ppoq7kp_q)ee 2, 057
ooz . [r-1-3] [r-1-1]
1 t -1-j. lr-1-3] 1 __t r-1-1
+Ij§1kn—1—j“' @1 7977 16312911 (r=1,.... k),
[r] [r-1]1'_-1 . .t [r=1],-1
[ Q15 =-Qy, T8 * (I € ar0; ey
[r-1]
+{€_-—(h_—k_)€}sQQ QT
(9.27) W p-1 p-1 "n-1 22 l
1 . .
- t =1=-j . [r=-1-3]1_-1 [r-1- 1]
R SIS 2} ~€531,91 %y
(r=1l"'lk)l
[r] (rl, [r-11'"_1 t [r-1]
Q557 795578 = Q) 1918311973
9.28) “In -k RN Tok-1,1 5 x Q. eetol 1™ JQ[r 1-3]
(9. T -1 n-1*1°%° 22 1; n-1-j"1 1
1 {r-1-1] -
QlSa,]zQ,]z (r=1,. k)
C oLt DRI 1t (k] 1 _ olk]
0=e,1%2 ~1%%311Q2 "1,y NN T NP
(9.29) { 1
1 =1-3 [k il _ 1. [k-1]
+1j§1kn 1-5%1 €€ 91 Q) 1918 12Q12 } v
t (v=1,...,1).

The equations (9.22) and (9.24),...,(9.29) are derived from (3.3),
(3.4) and (3.5) by direct computation. The relationships (3.3)

imply
[O] _ (o] _ [O] =
(9.30) 22 Ql Q1Q22 =0, (a) =1I.
The first of these equations implies that Qggl is a diagonal

[O]

matrix. The diagonal elements of Q have to satisfy the

initial value problem

'—l - = =
n l(hp_1 k _4)n=0, n(a)=1.

We conclude this fact from the equation (9.28) for r=1. For

this purpose we have to observe that the diagonal elements of
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(11 _,01] (o]

QlQ22 Q22 Ql are zero, that Q12 =0 by (9.24) and that the
diagonal elements of QlestQI1 have the value 1. Hence Qgg]

fulfills the conditions (9.23). Conversely it follows that Qég]
is a diagonal matrix if it satisfies the equations (9.23) whence
(9.30) holds. This proves the asserted equivalence.

From (9.20) and (9.21) we infer that there are

vruéiwk+1-r’m(a,b) (r=0,...,k; v =1,...,P; u=0,...,p~1) such
that
k
(u) _ -r -k
(9.31) n, (-,p)-—rgoo ﬂvru-+{0(p )1,

(v=1,...,p; b=0,...,p-1)

where (n1,...,ﬂp):= (m ) =€$QE?] is a fundamental

100" """ "p00
system of Hn=0 by (9.22). From (9.22) and (9.25) we obtain

t . [r]' _ _t [r] t t -1 _.[r]
€18117 TE1Qqq TE € e 0] Q)
for i=1,...,p-1; r=0,...,k. These equations and (9.21) show
_ () _ P . =
that ﬂvru'_ﬂvro for W=0,...,p=1; v=1,...,p; r=0,...,k.
. k+1~r,e .
Since = EW (a,b), it follows that
vr,p-1

. € wk+p—‘r =)

vrO (a,b). From (9.20) and (9.21) we infer that there
are nvrufiwk+p_“_r’w(a,b) for v=1,...,p; u=p,...,n-1
and r=p-u-1,...,k+p-u~1 such that

k+p-u-1

- ~-k-p+u+
(9.32) U o) =T e L L pTRRr
v _ vru ©
r=p-u-1
(v=1,...,P; U=pP,...,n-1).

According to Theorem (3.2), differentiation leads to

k+p-u-2 _ e
(9.33) n\EUH) (cv0)= L o rﬂ,r + o (p KTPYHF2 -
r=p-u-1 kel
(v=1,...,P; U=P,...,n=1).
Again by Theorem (3.2) we obtain
k-1

(p) _ -r , -k+1
(9.34) n (-,o)—rgop Tor,p-1t {0 (0 )}
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from (9.31) for u=p-1. From (9.32), (9.33) and (9.34) we deduce

: =0, if r <0, and 7 =7’
Tory ! ! vru vr,u-1’

from p to n-1. The last equations lead to

_ (umpt) ()
VI vr,p-1 vrO

if r>0O, and u runs

m

for v=1,...,Pp; W=p,...,n-1 and r=0,...,k+p-u-1. Thus part

i) of Theorem (9.2) is proved if we show that nvro=0 for

r=1,...,k if r 1is not a multiple of 1. This is a conseguence

of the following proposition because

(9.35)  ¢"ple=0 if j is not a multiple of I.

(9.36) PROPOSITION. Let le{](a)=o for r=1,...,k.

We assert:
i) Q[r]=0 for r=1,...,k f r i8¢ not a multiple of 1.
1 [r] k+1-r %
ii) For r=1,...,k there are ¢ EM1 (W ""(a,b)) such
u— 14
that Qgﬁ.] =§21 raq[r]. _
PROOF. The assertion immediately follows from (9.25)
and (9.26) by induction where we make use of (9.35) and the
. -1 _
equation Ql —Il.
Now we shall prove the assertion ii) of (9.2). First

Alr] Alx] _ ) ,
let Q12 and Q22 (r=0,...,k) be arbitrary solutions of

(9.23), (9.27), (9.28) and (9.29). We shall show that the matrix

functions

Alr] R Alr] t.-r-i
(9.37) Q12 =L Q12 518m“1
m=1
and
1
[r] _ = t tm-1A[r] t . -r
(9.38) Q22 —m:1 (J1+5151) Q22 s.'stl»

where r=0,...,k also fulfill (9.23), (9.27), (9.28) and (9.29).

The elements of Qggl and Qggl belong to wk+1—r’°°(a,b)

A A
bécause Q%JZ:] and Qgg] have this property. 65(2)] =0 implies

(o .
Q12] =0. A simple calculation shows that (9.23) holds for Qég]

The equality w, =u)i_1(.)11 (i=2,...,1) leads to

1

’_J

1
s, .t t S t t — S t t
Q. (J, +¢ = N = -
l( 1 181) Ql<i~=25iei_1 +5151> izzwieiei—1 +5181
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1
_ -8 s t s t\ _ -s, .t t, s
= o <i§2“i-15151-1'+“151‘1) =0 Fyregena)

for s€Z and further to

(9.39) Qi(J§-+s1e§)m_1==w;(J§-+e1s§)m-1Qi (s €Z;m=1,...,1)

by induction with respect to m. Since

-1 _ 1_ t -r+j _ j+1 t_-r-1
Ql 51 —51, Ql-—Il, ele -—wm stl R
t, .t t, _ t
€ (Jl-+e1sl)-s
and because of (9.39) we obtain
olrl _ % L R B et I S ¢ PR ISy
12 =1 S 12 1 "1'm1 p p 117712 1 "17"'m’1

_ _ to—TA[r=-11_-1 to—r-1
+ <€p—1 (hp_1 kn_1)€p)s € Q22 €4 518le

1 . .
= t =1-jalr=-1-3] -1 t ~r-1
+ ji}kn"1'j€p€ 2, Q22 Ql e1ele

) t Alr-1-1]1_-1_ & -r-1
€p212%912 £ €188 }

e

Alr-11"! t, -r-1 e bt Alr-1] to-r-1
1{ Q2 E1fnfy T I TELa000, e 0y

m

+

)€

(Ep-1"(hp—1"kn-1 p Q2 fqfn"

t -1,_t t,m=-1A[r-1] t -r
)s Ql (Jl+e1£l) E. €

£ —-1-3
€

1 , .
t,m=~1A[r-1-3] t —r+j
+ E k .€ ¢ l) Q22 e1ele

t
1 n=1=37p (Jl+€1e

€p212912 €18l

t Alr-1-1] t -r+l-1}

[r] [r]
Q7 and Q)
fulfill (9.27) because these equations hold for the matrices

for r=1,...,k. We conclude that the matrices
. In a similar way we obtain
[r]__Q[r]Q -

21055 22 ¥ <
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€1) Q5848 1) 953848

?PﬂH

{Q (J +e cEym=14[d t r-(J§+e1e m-1A[d tQ r+1}
1

1
¥ (J§+s1
m=1

t m—1 Alr]l Alr] t +1
(20557705579, ¢4 enfy

l .
t t.m=-1A[r-1]1" t_~-r+1
{(J1+5 1 Q0 gty

i
™

=1

t,m~ 1Q Lca t 6[r~1] 8tQ-r+1

1.t
T e eq) 11912 %18

: t t,ym-1 [r 11t -r+1
(hp_1 xn_1)(Jl+e1el) 2, ¢e¢ Q Q €185

e

JA -
i)m 1 lsetQ Q[r 1-31 etQ r+1

k (J +s 1 51 1

1
+ —
lj 1 BT 1-3

e

(T +e ) Q Y

_1,..t t,m-1 at 6[r—1 l]8 t -r+1
71785 1531292 1%m 1

[r 1] l (r-11_1 _ [r-1]
= Qpn 7,827,973 T(h g7k q) 0y 88 “a] 053

k N el jQ[r 1-31 _1 Q[r 1-11]

n-1-341%¢ %1 19182959,

HFJH

+1
l
for r=1,...,k. Finally the relationships

t - t _ t t. -r _ . -r
€ le w 515 w 51 le, st £ w 6

and again (9.39) yield

[k]1' 1.t [k]_1 _ [k]
¢ { Qyp7 181881191y T TRy ) B ee “a] 0,3

1
11 ~1-3glk-31 _] [kl]}
+1jg Kp-1-5%7 8¢ Q1 9, 191€a12Q12 £,

ALK] 1 _ ~1A[k]
peah; iy - ok pegeetalon

1
- _Q p-1

[k 31 1 Al k- 1]} _
1kn 1-5%1 €€ Q1 Q -1 12Q12 €, = O.
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(9.40) PROPOSITION. Let p>2. For r=0,...,p-2 and

i=1,...,p~r=-1 we have €§Q5§]==O. For r=1,...,p~-1 we have

PROOF. The first assertion is clear for r=0 by
(9.24). Assume that it holds for O<r-1<p-2. We have to prove
the assertion for r and i=1,...,p~r-1 which is at most p-2.
From (9.27) and the induction hypothesis we obtain

t [r] t[r-11"'_-1 t fr-1]_-1

€192 TTE Q8 TE54Qp T8 = 0.
The second assertion holds for r=1 since, by (9.27),
et o1l t,-1,[0],-1 t.[o]

p-1912 &1 T &7y Q570 8y = 6405578,
Assume that the assertion holds for 1 <r-1<p-1. Then the first
assertion and (9.27) yield

t [rY.  _ _t [r=1]_-1 _ .t fo]
€p-rQ12 €1 T €prs1Qn 9 &g = 40557,
t [r]

Let p>2. From (9.40) we obtain €,9,,° =0 for
r=0,...,p-2. Hence, by (9.20) and (9.21), there are

wvrezwk+2'p'r'm(a,b) (v=p+1,...,n; r=0,...,k+1-p) such that,
for v=p+i,...,n,
k+1-p
- - -k-1+ -
n (x,p)={ o Te _(x) +{o(p TPy, }e"‘*’v PX,
AV} r=O v @

From (9.20) and (9.21) we immediately infer that this represen-
tation also holds for p=1 and that, for p=0 and v=1l,...,n,

k
ny (xre) ={ Lo e, (x)+ {0 k)}m}ep‘*’v—px
r=0
where wvr<£wk+1'r'w(a,b).
If p>0 and p+l<v<n, O<r<k+l-p, we have
- etlolr+p-11.p t =1 [r+p-1]_p
Pvr T 61{Q12 97 T EpE 0 9 “1f8v-p
(9.41)
_ ctfAlr+p-1] t_—1A[r+p-1] -r
= 61{Q12 +€ ¢ Ql Q22 s1wv_p

by (9.21), (9.37), (9.38) and (9.39). If p=0, 1<v<n and
O<r <k, we have, by (9.21), (9.10) and (9.38),

- t,alr] _ —r _tA[r]
(9.42) ® = e1VQ22 £ = w £ Q22 €

vr v-p v-p 1°
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This leads to

-r
Lp\)r_-"("\)—pwp+1,r

for v=p+l,...,n and r=0,...,k. Hence, for v=p+1,...,n,

k

(9.43) n. (x,p) ={ L (eo _ )" e _(x) +{o(p'§)} }é"‘*’v-Px
v r=0 P r it
where wr F=mp+1,r.
For p=0, (9.42) yields
t [O]

®6 =01 %2 8-
For p=1, (9.41) yields

- - -1 [o] _ .t [o]
Py =0y =¢ Q1 Qpp 18 =€4055784

For p>2, (9.41) and the second assertion of (9.40) yield

- [p-1] Pe t [O]
®o=®p+1,0° €jo;5  Mabe, =cloz e .
i '-— - == =
From (9.23) we thus obtain ¢ l(hp_1 kn_1)tpo O and wo(a) 1.
If p=0 or p=1, we have ¢_=0¢ EWk+1-r'°°(a,b)

r p+il,r
for r=0,...,k. Next we will prove that this also holds for

p>2 and r=0,...,k+1-p. From (9.20) and (9.21) we infer for
v=p+l,...,n and u=0,...,p~1 that

k+1-p _ L
9.44) oM (x,0) ={ T oo T (%) +{o(p K1), }e"‘*’V'PX
\Y — vIyu o
r=1-p
where .
_.p .t k+p-1] t =1, [+p-1] wk+2-p-r,=
(9.45) LN mv—p€u+1¢%2 +€pc 2, Q, €, p (a,b)

for r=1-p,...,k+1-p and ® 0=®, - For v=p+t,...,n,

p=1,...,p~1 and r=2-p,...,k+1-p the equations (9.27) yield

- [r+p-1]
Cor,u-1 v j uQ fv-p T
p-1(__t [r+p-2]' _t [r+p-2] to-1 [r+p-2]
(9.46) WF ( €017 €t 1007 euep_1 2] 0, € yp
- w"‘ (-—(D' +LO ) .

v-p v,r=-1,u-1 v, r=1,u

We will prove that (9.46) leads to

(9.47) © whHi-r-u,e

vru (a,b)

for v=p+1,...,n, p=0,...,p~-1 and r=1-p,...,k+1-p. For
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w=p-1 this is true because of (9.45). And (9.45) yields
0 =0 for u=0,...,p-2. Assume that (9.47) holds for r-1
v,1-p,u

where 1-p<r <k+1-p. A recursive application of (9.46) yields
K+1=r-y,=
wvruéiw - (a,b) for uy=p-2,p-3,...,0.

: - +1-r, .
From (9.47) we obtain L ‘°p+1,roewk {a,b).
It remains to prove (9.5) for u=1,...,n-1. The

egltations (9.20) and (9.21) yield

k=u
- ~-k+ -
(9.48) n‘“)(x)=={ L o To _ (x)+{o0(p kM) }e°““ p*
v r=—1 vIry w
for v=p+l,...,n and u=p,...,n-1 with mvrue:wk+1'r"“’m(a,b).
According to (9.5) we have to prove that
']z—u r+yu .
(u) _ - M w (9) ~K+u PO, _pX
(9.49) n, (x,p)—{rzz_u(pwv_p) jgo\j wr+u_j+{0(o )l e P

for v=p+t1,...,n and p=0,...,n-1. This representation is true
for u=0 by (9.43). Suppose that it holds for some u<n-1.
Since the right-side of (9.49) is equal to the right side of
(9.43), (9.44) or (9.48), we infer from theorem (3.2) that differ-
entiation is allowed and. leads to

E—u—T r+y .
(u+1) { . —r . (u) (3+1)
n, (x,0) rgiu(pwv-p) 52003/ O3

E—u r+yu .
— -r+ —
+ { Lo(w ) £+l (9)@3)_.(:{)
r=-u p j=0 J H=3

+ {o (p—k+u+1) }m}ep(‘)v-px

K- (u+1) r+(u+1) .
_ L -r ut1y (3)
{r=_€L+1)(pwV-p) jEO ( J >wr+hr+0—j(x)

# o (pT M)y Lepoy-px

which completes the proof of Theorem (9.2).

From (9.2) and (9.21) we infer

(9.50) COROLLARY. Let the assumptions of (9.2) be full-
filled. Then there is a QZEEMl,p(W1’m(a,b)) such that
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101971, wga erth,

Y(-,p) = p p E(-,0)
where
17 ... 01
A w1 cee O
vV = . . EMp,l(EL
p-1 p-1
“3 @3

Theorem (9.2) stems from Eberhard and Freiling [11]
apart from the smoothness conditions on the coefficients ki and
h, which they don't specify explicitly. In [9] they proved a
weaker form of Theorem (9.2) which is more or less equal to Corol-
lary (9.50). This weaker form was also given by Wasow (351, pp.
229-232. The foregoing proof of Theorem (9.2) is different from
that of Eberhard and Freiling, but rather similar to Wasow's
proof of Corollary (9.50).

Eberhard and Freiling, cf. also Naimark [29], subdivided
the p-plane into certain sectors. We do not need this subdivision
in our proof. Eberhard ahd Freiling state their asymptotic expan-
sions with respect to these sectors. Consequently, their regqula-
rity criteria depend a priori on these sectors and they have to

prove the independence of the regularity criteria from the sec-
tors,

1C. THE CHARACTERISTIC DETERMINANT

From now on we will be concerned with the boundary
eigenvalue problem

[ LD(A)n:=Kn ~AHn =0

(to.1) 1 . n(a)

m 25 b n(g)
Rin = z1w‘3)m : +{W(E,2) : dg =0
J= (n-1) a (n-1)
| n (aj) n (g)
UIGHn(a,b)) where
. n-1 . p-1 .
Kn=n™ 4+ ¢ k.n(l), Hn=nP) 4 z h.n(l),
AP § ,
l—O l:O
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n€N~ {0}, 0<p<n-1, 1:=n-p, m>2, a=a, <... <a =b,

W em @ G=1,...,m), W(-,1) €M_(L,(a,b)). Furthermore. we
require that W and the W(j) (J=1,...,m) are polynomials with
respect to A and that the coefficients ho""’

fulfill the assumptions of Theorem (9.2).

Let ﬁ1 and ﬁz be defined as in (7.12) and (7.13).

For the following definition we assume that p(L) +@. We fix
closed Jordan curves FvC:p(L) (veEN) such that OEEinth

BoqrKgreee ik

[4

int T cintrT ’ U intTr =C.
v v+1 v
veE N
(10.2) DEFINITION. Let | | be a continuous norm on
Hn(a,b) and let 5,'{5'62.
i) L 1is called | |-regular of order (P,P') with respect to
f==(f1,f2) EIQ(a,b)XEn (and with respect to the curves Pv) if
“B-1A
S IAPTIR OO, 1 1dal -0 (v - o)
1 1
F\)
and -
- '—
J127P 1§2(x)f2||dx|—»o (v - )
I-'\)
hold.
ii) L is called | |-reqgular of order (B,B') (with respect to
the curves rv) if L 1is | |-regular of order (5,5’) with

respect to all f€jL2(a,b)xmn.

For the following we substitute by pl. In section 9
we proved that the corresponding differential system (7.6)
%D(pl)§==o can be transformed to a system of type (3.1) so that
the regularity Theorem (5.14) can be applied to the boundary

eigenvalue problem

1

~y o~ o~ A ~
T o1y = §-A¢-,oH)y = 0

(10.3) b

m .

TR(pl)y = X W(J)(o )y(aj) +fW(z,07)¥(5)dE = 0
j=1 a

urEH?(a,b)) and thus also to (10.1), cf. Theorem (7.11). For

this purpose we have to determine the asymptotic behaviour of the

“characteristic" determinant.

(10.4) PROPOSITION. Let € " 3=1,...,p), VJgs) con,
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dj?s)em (3=1,...,1; s=1,...,m). We define MEM_(L) by

m m
(s)_ (s) (s),  (s)
. L d1 Vi Taeses . d vl ).

M:=(u,,...,u
1 P g=1 s=1 1

We set )
1
@:={1,...,m},

6 ._gl01), . 4(01) = '
4 w—d1 e dl (8 (61,...,61)616),
v :=v$ej),

] e 5]
v9 F=det(u1,...,up,v1,...,vl)

and assert that

dgetM = ¥ a®vP.
0€Q

PROOF. The assertion is clear for 1=1. Assume that it
holds for 1-1. Set

(s) 2 _(s)_(s) T (s). (s)
1 . d2 Vo ey o dl 2 )

,dgs)v
s=1 s=1

M = hﬂ,,..,u

s P

(s=1,...,m). By the induction hypothesis we have

dgetM_ = 7 a®d.
8€0
81=s
Hence
o 8. 8
detM = 3. detMs = Y dawv .
s=1 0€0

Now we suppose that the assumptions of Theorem (9.2)
are fulfilled. Let Y(-,p) be the fundamental matrix of
phT=0 with Y(a,») =I_. Then YE€H(C,M (H,(a,b)), see for
example [28].

D(p) :=det (FR(p1)Y(-,0))

is called the characteristic determinant of the boundary eigen-
value problem (10.1). Let Y¥(-,p) be the fundamental matrix
established in Theorem (9.2). We set

A ~ -1
Y('rD)=Y('pp)E (alp)-
Obviously

Y(-,0) =%, (a,0)
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if p 1is sufficiently large. Hence

_ ~R, 1. A A-1
(10.5) D(p) =det (T (p")¥(-,p))-det ¥ '(a,p) .
From Corollary (9.50) we obtain

: {0] ‘
o] (a) 0
detQ(a,p) = pp'...'pn-1{det[ M p} + 0,(1)}.
o] cpo(a)Vszl

Hence

_ _ 1(1-1)
(10.6)  det $7 ' (a,p)=p (TP +—5—") 43

where d 0.
We set

P(x,p) =='§"(x,p)E—1(x,o) =Q(x,p)E-1(x-a,o)
and
U(x,0) :=F(x,p )P (x,0) =t
(?1‘1 (er)l---la‘p(xrp)r?;" (XID),---:'\\;]_(XJD))

where F is defined by (4.4) and (4.5). We define

U, = (@05, (v=1,...,p), Vo=t (V000 v=1,...,1),
1, . 2 ar . n _
F( 0 )_- rz;op Fr ’ Fr‘—'- (fljr)l,]=1 (r—-O,...,q)
and obtain
Gy, ey =etd T F A Gy
iv' ! =1 r:O ijrt v e
and
n . q .
~ . - 3-1 lr+j-1
viv( r0) j§1wv rEOp ijr“j,v+p( )
where "j,v+p:=[wo]m' We set
nb (3=1)
u, =.Z1Idxfijq(x)“ J (x) (1<i<n, 1<v<p),
J=la
u := (ul\))r.’:L=1 (1 <v<p)
n q .
-« . J-1 3 1r+j-1 pwWy-p(x-a)
u, (p): ji1w"‘priop idxfijr(X)"j,wp(x'p)e

(1<i<n, p+1<v <n),
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n
i=1

)

u (p) = (u

N iv (p+1 <v <n).

For i=1,...,n we set

(10.7) g; :=max{lr+j-1:1<j<n, O<r<q, £, +0} (20,

iir
where g, :=0 if fijr=o for all 1<j<n, O<r<qg. Let

9

(), 1. _. 1r_ (x) () _. ;o {(x)yn -
1 (p7) =: réop Wr R Wr =3 (wijr)i,j=1 (k=1,...,m),
q
i, _. ir _. n
W(-,p7) =: rg pTTW_, Wr—. (wijr)i,j=1 ,
~(x) () ‘s _
(10.8) Y. = N W, . (i=1,.0.,n; x=1,....,m),
= lr+j-1=g; 3% ‘
(10.9) YiK):=¢£K)wO(aK) (i=1,...,0; €=1,...,m).

For i=1,...,n and v=p+l1,...,n we infer that

uiv(p)

D (k) -a)
N (w Klle (a )]+o(1)>e"“’v'P(xK a }
=1 o K

ijr

’, b
+pgi{ ) w%:;£<wijrhdf[0u>1)h)ﬁg§xﬂmepwv‘9(x a)dx}

IR () (x.-a)
= (oW _p)gl{ oo Iyy 1ePPv=p ¥«
k=1
? pw (x-a)
+ Z [w,. (x)o _(x)],e" VP dx}
lr+j-1=gja IF¥ o771

where the relationship w3_1 =mgi-lr=w3i has been used. This

equation would not hold if we allow the boundary conditions to
depend on p instead of pl. In this case the boundary conditions
in (10.1) would be 1-th roots of A (cf. Benedek and Panzone
[4]). With the aid of Proposition (3.14) we conclude that

b .
J w5 (x) 0 (%) ]1e°“""P‘X'a’dx =0 (1)eP¥v-plc-a)
a
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where c=a if Re(pwv_ ) <O and c=b, if Re(pwv_p)>o. Thus
the above calculation leads to

5 [y (K) 5p0y-p(ag-a)

uiv(p)=(pwv—p)giK§ [y ' 1ePPvmpiacma

(1<i<n, p+1<v<n).
1

In a similar way we obtain
n g _a\b .
L X o a £ 0000V x,0) = Tu, 1 (Tein, 1<vep).
j=1r=0 a

Thus we have
b
det<¥R(pl)Q(p)) = det(fdxF(x,pl)Q(x,p))
a

l .
= p qpdet([u1],'...,[up],up+1(p),...,un(p)).
Proposition (10.4) yields

(10.10) det(%R<ol)9<p))= 5z e”Cov® (o)
0€EQ

where, if o =(e1,...,el)€ 0,
1

] é‘ “y (ae\)_a) !
v=1

C

Ve(p) =Olquet([u1],---r[up]rV1e(O),---,VJe_(O))r

vole) = (vl NGy, v () = (pe i Iy {®V)]

(1<i<n, 1<v<l).

For 1<i<n and 1<v<l we set ng s=y{ev) and obtain
g 6 9171, 8
. L [u11]."[u1p] (w131 [y} (p0y) [yq,]
v’ (o)=p Pdet| : : : : .
: : In .0 In,°
[upqdem a1 (oo IR Iy Te (o0 )90 [y )]

Now let

A
(10.11) g w=max{gi1+...+gil :1‘.j €{1,...,n}, :Lj #i. (j #k)}

k
and

A A
(10.12) k :=1gp +g.
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Let J:={Ic{1,...,n}:#I=1, T gi==$}. For I={ij,...,i,}€J
i€I
we set 1 s={1,...,n}~\1==:{i;,...,ié},

roJi1y 8 9i1, 8
6 3 vy g e 01t Y
d. :=det . . ’
T gil,® gijq, 0
LOT™ g g om e ©T Yy
ui;1 N ui'p
uy :=det| . P
I . .
WU, 5. oo0o W,
s i
P pP
Then the expansion of the determinant ve yields
A

(10.13) PROPOSITION. Ve(p) =pk[De], where

¢]
D.= 7 o,.d ux and o. € {+1,-1}.
8 T1€J I 11 I

Now let us consider two special cases:

I) Without loss of generality we may assume gizgi+1
for 1<i<n-1. i’urthermore let p#0 and 91> 9749" Then
J=4{{1,...,11}}, g=g1+...+gl and

@3 00 P10 Y141,1 °° Y1+1,p
D, = tdet : . det . : .
) g1 6 9.0 : :

©WytY1q e 07lvqy Up,q ces Upop

A

If p=0, then k=g1+...+gn and

I8 w31y

1."11 " “n."1n
De=det : : .

9, 0 9n, °

©1" Yt o0 mnnYnn

IT) Separable boundary conditions

Here we suppose that we have a two-point boundary
operator

~R~ "~ Tavl
FRS = w35 (a) +Wo5 (b)

. t ,
with eiwa=0 or etizwb=0 for i=1,...,n. We may assume

. t .
e:._:wa=0 (i=1,...,8) and eiwb=0 (i=s+1,...,n) for some
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s€{1,...,n-1}. Let

19| :=#{v€{1,...,l}:6v=2},

{i1,...,i|e'} =={VE{1""'1}:9\)=2}'

and
{llel+1""'ll} :={\)€{1,..,,1};ev=1}.

Since
et.:v9=0 for 1<i<s, 8 =1 or s+1<i<n, 6 =2
i'v >+= v <ic< y

we obtain

(g dlity d o (005 D9 b [P towy 2915 (2

; I
. y9Is . (2) _ ger (2)
Ve(p)=tplquet (p‘*’11) S[Ys ]-»(lelel) S[YS ]

0] 0 |

. . ; : |

o, o 5 i
| 0 0
I : :
° 0

! 1
(pwilel+1)gs+1[Yé+%] r (Dwil)gs+1[Yé+i]
! : .
B T A Y (pwj Inpy (M |

The latter matrix contains two zero block matrices of the size

(n-s)x|6] and sx (1-16l). From the definition of the determinant
we thus obtain ve =0 if (n-s)+i6]>n or s+(1l-161) >n. Hence

vl =0 if |68l <s-p or el >s.

Now let s-p<i6l<s. We may assume g;2---29 and g

>
s s+1~"°"°"
29, If, in addition, gq> .- >g, and Ig4q > - -~ >9g, then

r -1 1
ug 56 o) } lel
. 0 wl o 0|} s-lel
v i(p) =tp { det 3 2 + 0(1)
u 0 d } 1-196}
8 ]
! _ug 0 O | } n-s-1+|s| J
p 61 1-je]|

81



where

6
k :=lqp+g1+... +glel +gs+1+...+g

s+l-]e}
T u u, |
8 11 """ T1ip
u2 . .
ol .
317 : ’
ug .
u4 u. u
L =g - ““n1 """ “np-
g1 g1
©iq R ST
~1 _ .. (2) (2) . .
de—dlag(y1 yo o ,'Yl I) : :
901 Jlel
Wi3°" ee. Wijg
9s+1 Ss+1
Cijgi+q =t Wiy
~2 . (1) (1) . .
dg =diaglyg qre-er¥gyiyg)) : :
9s+1- 6| gs+1-lel
Cifel+1 tr Wiy
From
-1~ ; -1 ;
ue de (6] ue de 0
ug 0 (0] ug 0] O
det 3 ~ =zdet 4
ue (0] | de ue (o] (6]
4 3 ~2
[Ug 0] o ] Lug o deJ
1 ~1
Uy dy 2
2 2 Ug 1 2
= tdetfug O det (d7) = tdet| , det(ae)det(ae)
4 Yg
Lue 0
we infer
7]
(10.14) ve(p)==pk [D.]

~ 1
where De-tded

D N

i ~i o
Uy, de-—det(de) (1=1,2) and
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“lel+1,1  t Ygp41,p ]

u
ue==det S 1 S/P .

Usel-lol+1,1 "°° Us+l-lo1+1,p

un,p ]
In the case p=0 we have 1=n, |68]=s and §6==d;dg without
any restriction on the g5 -

For the sake of simplicity we only made use of the
first terms of the asymptotic expansion of ?(x,p). If we would
apply the full asymptotics which we stated in Theorem (9.2), we
would obtain more precise asymptotic expansions for the characte-
ristic determinant, cf. for example Freiling [12] and Heisecke
[14]. More complete asymptotic formulas for D(p) yield more
general regularity criteria than those which we will state in thé

following section.

11. CRITERIA FOR REGULARITY FOR BOUNDARY EIGENVALUE

PROBLEMS OF EBERHARD TYPE
In this section we shall apply Theorem (5.14) to the
eigenvalue problem (10.3) and, by Theorem (7.11), also to the

eigenvalue problem (10.1). According to (10.5), (10.6), (10.10)
and (10.13) the characteristic determinant has the asymptotic
representation
- A
(11.1) D(p) =p'(lp'*l(lé1))[d] Z‘epceok[DeJ
€0
where
1
ce==v§1wv(aev—a)
for o =(61,...,el) €C>={1,...,m}l. According to (5.10)

E={ce:e€O}

and P is the convex hull of E. By Proposition (5.11), p=

Pro,13
which is the convex hull of
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E ={ L w (b-a) s ¢<Z,}.
{0,11} vEd vt 1
As in section 5 we denote the set of all vertices of P by E.
In order to apply Theorem (5.12) we have to calculate £  (and
A “
E). For the sake of simplicity we suppose that b-a=1. For
r=0,...,1 and he€eZ we set

1
¢r ::'.:{0,1,,@.,:1"1}&211
h
¢r :zh+¢r={h’h+1’°"'h+r—-1}czl.
For ¢cZ, we set

bW 2= YL W .
K€ K+1
(11.2) LEMMA, i) Let 1 be even. Then
l\'“ h .
2
and a point ¢ (¢(:Zl) belongs to the boundary of P iff

_,h 1,11 .
¢ =9, where r€{§—1,2,2+1} and kiEZl.

ii) Let 1 be odd. Then

E= {¢l];'m :r€ {.J:.Ei,lé”, heZ,l,

and a point ¢w (¢C:Zl)  belongs to the boundary of P 1iff
¢w(£§.

PROOF. i) For 1=2 we have E={-1,+1}, P=[-1,+1]
and the points

{¢?w:1:€{0,1,2},k1622}={—1,0,+1}

belong to the boundary of P (in ().
In the following suppose 12> 4. Set By :=4>12w (h EZl).
2

We have
h+3-1 -1
B, = L oW = W L ex (2"iK)
h Lo Weqq T Opgq & €XPITT
k=h k=0
2
= Wy —_— .
h+1 1~exp(2ql)
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Hence the boundary of the convex hull of {¢}£w : hEZl} is a

2
regular polygon with the 1 sides Bh’Bh+1 (hEZl). For every

hezZ we have w +w = 0. Hence
1 1 el
2
h+s h+3-1
¢§1 ©= L W4T I oo qtepgte =¢1'11+1m.
>+1  «=h © k=h+1 ¥ h+s+1  =-1
2 2 2
From
h+i-2 h+%- h+%— 1
h 1 _
10" B ear T E oent B oot epre )
= = = )
1/ h-1
=§{¢1 ‘”+¢1‘°}’
2 2

we conclude that the point ¢lj_l w=¢}£_1w is the midpoint of the
-1 =+1
2 2
line segment Bh-—1’Bh' Note that any point z€( with
lzl| < Idbl wl lies in the interior of the regular polygon with
=1
2
the vertices Bh (h EZl). Now let
h 1 11 . Sy
) €IP(Zl) ~ {¢r :r€ {5—1,-2—,—2—+1}, h€Zl}. The assertion i) is proved
if we show that |¢wl < |<1>l wl. Since
-1
2
o+ Zy>0)e =20 =T o, =0,

we may assume that #¢ 5%. Furthermore we suppose that 4w # O.

Define
+ . -1
¢ .—{KEZl.Re{(qm)) wK+1}>O}.
There is a hEZl such that q>+=<1>}]:1 or ¢+=¢§_1.
. ___1 —_
2 2

1

@) Here we consider the case that Re{ (pw) 'w }>0 for all

k+1 +

k € ¢. We conclude that ¢ is a proper subset of ¢

a1) Let q>+=qblil . Then
=-1
2
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1= 7 (<i><x>)"1col<+1 = Re ¥ (s0) 'w

KEP K€D
< Re Z]+(¢w)-1w
KEd

k+1
-1, +
c+1 S lpwl "¢ wl
whence
ool <16® wl=1¢, wl.
1 1
=-1 —2—-—1

az) Let ¢+.=¢

N o

. , + 1 . 1 ,_.h'
if hé€¢ and ¢':=4¢ '\{h+§—1} if h+5-1€¢. Then ¢ =9,
==1
2
1
some h' €Zl and ¢c:¢? . Thus according to a1) we have
* -
2

| pw | <I¢l_1wl.
2

a3) Let ¢ =¢? and {h,h+%—1}<:¢. Since ¢ ¢¢? there is a
2 2
3 E¢?‘\¢. Let «' E{h;h+%—1} such that
2

Re{(¢w)—1w }==min{Re{(¢w)_1

op Rl (40) e 1)

h+7

< "+1

and set ¢' :=¢+‘\{K'}. Then

1 1

Re{ (¢0) wK,+1}‘<Re{(¢w)~ W }.

3+1
Therefore

1=Re ¥ (40)”

£ wK+1‘<Re{ ~ (pw) mK+1-+(¢w) wj+1}

KEP
Kk

<Re 7 (40) '

<1o01™ 14" 0l
K€ ¢

K+1

and hence again
[l < I¢l_1wl
2
Thus part i) is proved if ¢ fulfills the assumptions of o).
B) Here we consider the case that ¢d:¢+. We choose some
<4 €¢‘\¢+ and set ¢' :;¢ \{K1}. Since
1

1= 7 (40) w

14
<E€d k+1
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¢' is nonvoid and Im j, (¢w)_1w =0. We infer that

) k+1
» 2
1 ={ReK§¢(¢w) wK+1}
<{Re F () o }2+{Im o) e }2
K€ o' k+1 K€ o' . K+1

= 140172 1o 0l 2.

Now we have to repeat the procedure from the beginning with ¢°'
instead of ¢. After a finite number of steps we obtain some ¢"
with the following properties:

#o" <#¢, ldwl <l¢"wl
and either

n _ h
0" =67 for some 11€Zl

51

or
11
2'2

and fulfills the assumption in a). In both cases we infer that

n h. _]_'.—
) EP(Zl)\{¢r.r€{2 1 +1}, h€Zl}

lool < 14"l 2146, wl.
=-1
2
ii) For 1=1 we have E={0,1} and P=1[0,1]. In the following

we suppose that 12> 3. Let r1€Zl. A simple calculation shows that

h w= L W =w r ex (2ni|<)
®1-1 L c+1 = %he1 & |
—2- K-—h K—O
1-+exp(-2%)
=@ :
h+11-—exp(2zl)
We set
1-+exp(—2%)
Y := :
1 —exp(g%i)

— _.h : _ .
and BZh =0 YT 6. Since le-o we infer that
2
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h+..];i-_1.

h - h 2
¢ w==(Z,;~¢ Yo =-9¢ w=-w Y
1+1 1 1+1 1-1 1+1
2 2 2 h 2 1
2ni(h+l—;-1—) -
L= exp(fni) exp(-——l——————)Y = mh+1Yexp(—l-) .

We define B, .4 :=wh+1yexp(ﬂli) . Thus the boundary of the convex

hull of {¢kll_1w,¢}ll+1w : hEZl} is a regulai‘ polygon with 21 ver-

tices and the sides Bh’ﬁh+1 (hEZZl). The inradius of this regu-

lar polygon is l|ylcos (%‘I). Now let

¢ EIP(Zl) ~ {¢}; s Y € {l;—1,l—;—i}, h.GZl}; we have to prove that

| dwl < IYICOS(%). Since ¢w=—(Zl\¢)w, we may assume that

#¢ 51—;1. Furthermore we suppose that ¢w +O. Define

¢+ :={« EZl : Re{ (¢w)_1OK+1} >0}.

. . +_h +_h
There is a hell 'such ‘that ¢ =¢7_ 5 OF ¢ =dq,4-
2 2
o) As in part i) we first consider the case that Re{ (q)m)-'1 wK+1}>o

for all « € ¢. Also here ¢ 1is a proper subset of ¢+
L+ _ + -1
a.l) Let _¢.\¢\_{,K.1:}' .Thevnr: ¢z“w—-u:¢)w(1 + (ow) QK1+1,

- 2 /g \ 2
0*a1? = sot (1m0 o, )+ (1ere (o) o))

) and thus

Zpwl? (’Im(( ) o ))2+ Re ( (40) ! )
=10 e xqt+1 ' o0 wK1+1

-1 B
+2Re((¢w) ~‘ru>K1+1)‘ +~1}
> 1g01 ) (b) o q17 4 1141001

Since l¢+wl = |y], we infer that

2 2
ol 2<iy1?=1=1v12(1-—5).
vl
It is easy to see that |yl = ‘(ZSinv(-;—l))q. Hence"

2 2 . 2,1 2 2
l¢wl“ < Iy1°(1 -4sin“(37)) < I¥l7cos (_2“_1),
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l+1

a ) Let #(¢ \¢) >2 and assume there are hEZl, re {0,...,—}
such that ¢ —¢ . From #¢ 5#¢ 2~<}i;-—2 we infer 2r +1 51-2.
We have
h+r r-1 5 1 —exp(2"lr)
b= L o =op., L expl MK) = Oh4q 2n
k=h+1 ¥ + k=0 1 -exp(——i)
and thus
sin(ElE)
¢l = -
Sln(I)
Hence
|¢wr-h1Sin(2§)— 51n( (2r+1))cos( l) cos(21(2r+1))51n(21)
m
cos(EI) COS(EI)

<lyl51n(——(2r+1))-—lYIcos(Zl(l (2r+1))

<IYIcos(2l)

a3) Let #(¢ ~¢) >2 and assume <b€{¢? :r€‘ML...,l},I1€%l . Set

d(¢) :=min{r€‘{0,...,l}:3h€l ¢c¢ }

Since ¢C:¢+, d{(¢4) 1is at most i%l. Choose r and h such that

r=d(¢) and ¢<:¢?. We have r > 2. Because of the minimality of
r the two different numbers h and h+r-1 belong to ¢. We
assert that ¢?C:¢+. Otherwise Zl\~¢+ and {h,h+r-1} would be
disjoint subsets of ¢? and this would lead us to the contra-

diction )

1+1 1+1 143

Tzrzl-——-2—+2—--—i——.
Hence the above assertion is clear. It follows that we can choose
K1€ {h,h+r~1} such that

-1 . -1 ] h
Re{ (pw) wK1+1}-—m1n{Re{(¢w) W o4q iK€ ¢r}.

Furthermore, choose AK2€:¢?‘\¢ and set ¢' 2= (6~ {k 1) ULk, ]

Then #¢' =#¢, d(¢') <d(¢) and sw=¢'w+w , whence

K1+1._wK2+1

1 1

_ —1 [] - - -
=Re{.(¢0) "¢'w} + Re{ (¢w) wK1+1} Re{ (¢0) " }

ko+1

<Rel (40) ' 0} < 1401”14 0]
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and thus l¢wl <i¢'wl.
g) Here we consider the case that ¢<t¢+. As in the case 1i),B) we
choose some «, €¢’\¢+, set ¢' :=¢‘\{K1} and infer that
#6' <#¢ and lowl <id’wl.

We continue our proof of assertion ii) by treating the
cases a3) and B) together. In both cases we have #¢' <#¢,
d(e') <d(¢), #¢" +d(¢') <#¢p +d(¢) and I¢wl <l¢'wl. As in the
proof of i) we have to repeat the complete procedure with ¢'
instead of ¢. After a finite number of steps, we obtain some ¢"
which fulfills the asssumption'a1) or a2).

E has been defined in section 5. Since in (11.1) the
exponent ﬁ does not depend on 6, we have ﬁ==§ by Remark
(5.13). For ¢2cZ  we define 80 = (o ,.e 0 €{(1,mitco by

setting ej =m, if j-1 €¢§, and ej==1, if 3-1 $¢2. We abbre-

A() A

fulfilled and suppose that

i) Dg ¥0 <Zf 1. is even,

N

ii) Dg #0 and Dg ¥#0 <f 1 <Zs odd.
1-1 1+1 7
2 2
Then there are p,p' €Z such that the operator function L, given
by (10.1), s I'H-(a b)~regular of order (S,E') for j=0,...,n.
For the proof we state the following
(11.4) PROPOSITION. Let O<r<l and hEZl. There are

Ah =
anh €C ~{0} such that Deh ath{e\r

PROOF. The assertion is trivial for r=0 or r=1
because we have 32=={1,...,1} and 8?=={m,...,m} for all
}1€Zl. Suppose now that O<r <1l and let J be defined as in
siﬁtion 10. By Proposition (10.13) it is sufficient to prove that

A
Or = Or 4
dI arhdI for all TI€J where ah does not depend on I. We

have
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w911 b 9Ji1 b 9i1 a 9in a

A X Yi eeel
ﬁh h (1-h) h+1Y 11 h+r 11 h+r+1 11 h+1 ' 11
dIr=64) det : : . .

91-. b gll b  9ij v2 911 a

Yy e Y, e @
h+1 l h+r 1l h+r+1Y 11 h+1Y 11

gi‘] b . Y9iq1.b 911 a 9iq_a
s “4 Y11"""r Yi1 r+1 11"""1 Y11
h (1-h) 9iq™-*9iy . . . .
=E0 ©pt det : : . .
gil b gil b gil a gil a
w Yo eee Y, © . eee @ Y.
1 i, r i, r+1 i, 1 i,
8
= r
arhdI .

Now we are ready for the proof of Theorem (11.3): We
have already stated in section 10 that the regularity Theorem
(5.14) can be applied to the operator function %(pl) defined by
(10.3). D(p) is the corresponding characteristic determinant. By
Lemma (11.2) and Proposition (11.4), The assumption 1) or ii)
yields that D #+0 for all ce€Eﬁ==§. According to Theorem (5.14)
T is L (a,b) regular By the proof of Proposition (6.1) we obtain
the H1(a b)~regularity of T: there are ﬁ,ﬁ'ezz and an increas-
ing sequence (dv)z of positive numbers with dv-*m for voe
such that

lpP‘R (ol £
Ipl=dv

1160 (a,p) 180120 (voe)

and

Ay

-p'~1 1

o [=a ip Rz(p )fZIH?(a’b)Idpl-aO (v » o)
\Y

for all £, ELg(a,b) and f2€¢n. Choose p,p'€Z such that

~ A ~ A
1{(p+1) > p+l and 1l(p'+1) >p'+l. The substitution A=pl yields

p 1
IAII- 11 Ry (M) f e | H (a,p) ldr1 =0 (v - )
v
and
-Br-1
IAII=dl“\ Rz(x)leﬂ?(a,b)sdxl »0 (v -+ )

\Y
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for all ' 'f, €L,(a,b) and f,€L". From FOOR, () =1d

2 L“(a b)

and TD(A)RZ(A)==O we infer

t t~D “ tA A
(ejR1(A)f1en)' ejT (A)R1(>.,)f1en+ejA(,,A)R1(>\)f1en

t
je1Ry (M Eeey
and
t ' = tA ° = t
(eijy(A)fz) = ejA( P MR, (A £, 341 Z(A)f
for j=1,...,n-1, £, 61?(a,b) and f, € t". These relationships

and (4.1), (4.2), (7.11), (7.12), (7.13) lead to

-p-1 (3)
mf_dllx (R (M £,) | IH1(a'b)ld>\l

R (A)e f

= 34181 e, @, 1920 o)
\Y

for j=0,...,n-1 and f1 €I?(a4b). Analogously we obtain

p'-1 4 (3)
I '>‘ (R, (M) £E,) | |dx] -0 (v » )
|xi=al 2°7 %2 H, (a,b)

for 3j=0,...,n-1 and f2€I¢n, whereby Theorem (11.3) is proved.
For separable boundary conditions we would have De==0
for nearly all indices 6 if we would use the representation of
the characteristic determinant considered above. Therefore we
return to the special representation given in section 10. We
assume as in section 10 that 91? ..‘.>-gS and g

Then

a1 > 1t > 9,

1(1-1)
—(lp+———-— [a] v epCe k [

6€EO

(11.5) D(p) =0p ]

8

where ke==lqp-+g1-+...-+g|e|-+gs+1-+...-+g r Since ke

s+1-|8
depends on o it may happen here that ﬁ=¥§.

In order to assure regularity we must have 5 #0 for
Cq € E. From the result in section 10 we infer that it ls necessary

for regularity that s- pslgs, if 1 1is even, and s-p 51'—-

l%l-<s, if 1 is odd. Therefore we shall require that
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(11.7) THEOREM. Let the assumptions of Theor*em,(9,2) be
fulfilled and let k be given as in Theorem (9.2). Assume chiz
the boundary eigenvalue problem (10.1) has separable boundary

conditions as defined in section 10. Suppose that

9, >"',>gs’ Tg41 >+ 0+ > 9,
a) If 1 <s even, we assume in addition:

°1
2‘ B .
ii) y1( )¢O, ..,Yl()*O, Yél%#O,...,y“i#O,
2 S+=
2
iii) gi—nglZ if i,j€{1,...,%—} or i,jE{s+1,...,s+%} and

i3,
iv) for p>0, the number « =k -max{1l,p-1} (>0) satisfies the
inequality

. 1
g -9 if S =3+p
%H s+%— 2
K‘ZK" =19 1 -9 if s=%
S+§+1 5
. 1 1
L maX{gl -9g 17 9 1 —gl} if §<S<'§+p.

=+1 sS+= s+=+1 =

2 2 2 2

b) If 1 s odd, we suppose in addition:
i) u’e\ 0, u’e\ %0,

1-1 1+1

2 2
.. ~(2) ~(2) ~(1) ~(1)
ii) Y *Q""’Yl+1 0, ys+1#0,...,y 1+1*O,

z St

111) g;-9, €12 if i,5e0,...,8N or 4,5 {s+1,...,s+l-;—1-}
and i # 3.
Then there are ©p,p' €Z such that the operator funection

L <s IIHj(a’b)—reguZar of order (5,5') for 3 =0,...,n.

PROOF. First we show that Be +0 if Cq € E. The number
Uy only depends on [6]|. As in the proof of Proposition (11.4)
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we see that there are aérll) €l ~{0}

such that
i iy 1
dph = a'tay (0O<r<l, heZ , i=1,2).
9 rh 78 - -
r r
Hence the formula (10.14) yields that it is sufficient to prove
that '53 +0 for r=}-, if 1 1is even and for r=l-T1 and
r
r=£2£1—,\ if 1 is odd. These conditions are fulfilled by the as-
sumptions on the numbers Ug s '\71(3) and g Yi(J) $0 implies
( ) $#+ 0 because (po(x) $0 for all x€[a,bl]. The determinants
i
d@ are different from zero since, for arbitrary aiEZ
r
(i=1,...,1),
o1 o o o9 r-1
W, ...wr1 1 w21...(w2)

-
. . -
. - .

1 war...(war)r 1

r ...o%r
L9q “r 2

and thus a Vandermonde matrix. The last equation holds because
W. = Q)J—1 .
3

2
If 1 is odd, E=E by Lemma (11.2). If 1 is even
and p=0, s=% and, according to section 10, ve vanishes if
|6 #s. It follows that wv_=0 if e=311‘ or e=3li for
S-1 =+1
2 2
A~
some hEZl. Therefore, also in this case, E =E.
A~
Suppose now that 1 is even and p>0. Let CcE€ENE.
Then =cAh =cAh-1 with some he€Z,. Set
el el 1
'5-1 34‘1
= -1p-1=1)
kr' lqp+g1+'"-"gr"":"s+1+"'+gs+l-r lp 2
and let 'B'C be the function as defined in section 5. If s=%+p,
eh
then l 1=O and thus
ki -
b_(e) =p 2*1aDjh-11(p)
' L4y
2
1 Ah 1
If s =3 then v 1 - and therefore
2
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~ k1 oo
b (p) =p 271[dDAR 1 ()

1
27!
1 1
If —2-<s<—2-+p, then
~ k1 . S
b (p) =p 271[aBpR  1(p) +p 27 1[ab4h-11 (o)
c 1, 1,
2 2
From Theorem (9.2) we infer that each function [D,] has an

)
asymptotic expansion of the form

-K

[D,1(p) = ).

i

1=

- e

P lai+0(p
0]
Hence

15

ki+e!
(o)—pz (

p—lBi +0 (p_K)).
i=Q
. - k1
By assumption a),iv) «' <k. It follows that b (p) =p 7001) if
all coefficients Bi would be zero for 1-—0,...,K, this would
~ ]
lead to the contradiction ¢ ({E Hence we have bc=pk [bc]
with bc#o.
A
Altogether we have shown that b #0 for all cE€E.

Continuing as in the proof of Theorem (11. 3) we obtain the regqu-
larity.

12. AN EXPANSION THEOREM FOR K -AH WITH REGULAR
BOUNDARY CONDITIONS

First we consider again the differential operator (9.1).
1k,

(12.1) PROPOSITION. Le? k > 0. Assume kiGVV (a,b)
for i=0,...,n-1 and h ew™ L ®4 by pon i-0,...,p-1.

“ Then for any f€Hn+lK(a,b) there are
f-[j]€Hn+l(“<_j)(a,b) (3=0,...,x+1) such that glO] =f .and
Heldl o gel3-11 =1,...,k+1).

PROOF. For 3j=0 nothing has to be proved. Suppose
that the assertion holds for j=0,...,|< - with «' <«k. Then
Ke'* ]€H1(K-K') (a,b). Let ghe'+1] be a solution of the diffe-

[«'+1]

1}
rential equation Hf ~Kkel* ] With the aid of (7.20) we
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]
[c'+1] (a,b). This yields the assertion

conclude that £ €EH .
l1(k=x')+p
for j=«'+1 since l(xk=x')+p=1(x=(x'+1))+n.
(12.2) THEOREM. Suppose that the boundary etgenvalue
operator

LM = Py, LR,

defined by (10.1), fulfills the assumptions of Theorem (11.3) in
the case of gerneral multipoint integral boundary conditions or the
assumptions of theorem (11.7) in the case of separable boundary
conditions. Les p,p' be the regularity numbers accdrding to
Theorem (11.3) or (11.7), respectively. Assume in addition that,

for some « znmx{g,g',O}, kiGEWlK’m(a,b) for i=0,...,n-1 and

hiEWlK+l’m(a,b) for i=0,...,p-1. Let q€N and
q
Ry = ¢ aFuk
r=0
Suppose that fGIEH&x(a,b) fulfills the "boundary conditions”
) min{,q,K-j+1} ~ - ~e
(12.3) 3 pReldtr=1l o (5=1,....3".

r=0

» 4 . .
Then there 1s a sequence (dv)1 of positive numbers

converging to e such that

A
f = lim = {-(resuR1)Mf
VP® u€o (L), lul<d

(12.4)

-1 .min{g,c+3j+1} .
A 4
L +res, (Rz(x) T A T LRf[r J 1])}
“ j=0 r=j+1 t

holds in Hn(a,b).

- [j] L
PROOF. Let £ €Hn+l(K_j)(a,b) (3 =0,...,xk+1) be

defined according to (12.1). This definition and (7.12), (7.13)
lead to

. . _ . .
R, (nHeld) = —%f[J] +%’§1 uelIttd +—1—§2(A)LR(A)f[3]

for j=0,...,x. A recursive substitution yields
K

(12.5) ﬁ1(k)]Hf=— RN,
j=0

1f[j]-+x“K'1ﬁ1(x)Mf[K+1]
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K . .
+ 3 A'3"1/§2(A)LR(A)f[3].
Jj=0
As in section 6 we obtain
: : -1 .mi JE+HI+H1) :
{ § IRy el 2 qz Ajmln{qg J ”LRf[r-J—H
j=0 j=0 r=j+1 *
(12.6) <

k+1  _.min{qg,x-j+1} s

+1 r=0

By assumption the boundary eigenvalue operator function L is

. (a,b) "Fegular of order (p,p'). According to the proof of
n 14

Theorems (11.3) and (11.7) this'regularity holds with respect to
circles IAI==dV where dv-*w as v ->o. Thus Theorem (12.2) is
proved if we integrate (12.5) along these circles and use (12.6)
and the definition of the regqularity.

By Theorem (7.18) the residues in (12.4) can be ex-
pressed in terms of canonical systems of root functions of L
and the adjoint operator function L*. We omit the details and

leave the exact formulation to the reader.
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