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Octavio Mendoza Hernandez* Maria Inés Platzeck

INTRODUCTION

Let A = /;(/S)/I,‘whcre /.(5) is the path algehra of the quiver A over a field ky and I an
adimisible ideal. 1,01 Oy ocap be arrows in AL Iy (his paper we give a necessary and snfliciont,
condition for an A-module A 1o be a module over the quotient algebra A/ < « yooa > This
condition is more interesting when the algebra A is symmetric. If A is, moreover, the trivial
extension T(A) of a schurian algebra A then A is the quotient of T'(A) by an ideal generated by
arrows, so the above applics. In this way we gel informaltion about the Auslander-Reiten quiver
s of A from the Auslander- Reiten quiver [7,[.(’\) ol T'(A).
This is particularly useful where L'(A) s of finite representation type, case in which we obtain
a complele description of FA [rom f7-(A). This casc is interesting because A is an iterated titted
algebra of Dynkin type if an only if T(A) is of finite representation type. Moreover, this is the
case if and only if T(A) = T(A"), with A’ a tilted algebra (sce[4] and [2]). ’
T many cases one can choose A/ to be hereditary and such (ha, T(A) = T(A):. The -
Auslander-Reiten quiver of trivia] extensions of hereditacy algebras can be constructed (see [7]),
SO we can construct 'y in these cases. We describe this procedure at the end of the section 2,
giving also some examples to illustrate the techniques used. The fundamental tool in this work
is a description, given by B.Ferndndez and M.L.Platzeck, of the quiver and relatious ol the trivial
extension 7'(A) of a schurian algebra A = k(A)/1, for A a quiver without oriented cycles, which
we recall in Lhe first soction.

1 Preliminaries

Throughout, the paper I denotes a field, FA the path algehbra associated to the fnite

- -

quiver A = ((A)g, (5)1), where (5)0 is the sel of vortices and (D) the set of arrows of
A. '
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Also, we denote by A a finite dimensional k-algebra of the form A = k(Z\A)/I , where

&A is a quiver and I an admissible ideal. It is well known that when & is algebraically

closed then any finite dimensional basic k-algebra is of this form.

Let mod(A) denote the category of finite generated left A-modules and 15 the usual

duality . .
Hom(—, k) : mod(A) — mod(A°").

We also assume that e; denotes the trivial path corresponding to the vertex i, more-
over S5;, P; and I; are the corresponding simple, projective and injetive indecomposable
modules respectively.

The trivial extension T(A) of A by the A — A% bimodule Da(A) is defined to be the
k-vector space A 11 D (A) endowed with a multiplicative structurce given by

(M), ) = (M, Mp +op) for \p e A and o, € Da(N).
The map [+ T(A) = Dy (T(A)) defined by [f(0)](t, ) = w(u) + $(0) fs a A — A%

bimodule isomorphism, so that T'(A) is a symmetric algebra and therefore selfinjective.
On the other hand, the canonical epimorphism

m:TA)—= A, 7(A,9) =X for A€ A and v € Dp(A)

has kernel DA(A) an induces an embedding of mod(A) in mod(T(A)) which identifies the
category mod(A) with the full subcategory of mod(T'(A)) whose objects are the T'(A)-
modules A such that Dy (A) A = 0. In this way the vertices of the Auslander-Reiten

quiver FA of A can be identified with vertices of the Auslander-Rejten quiver of the trivial
extension T(A) of A.

We will describe next the quiver and relations of the trivial extension T(A) of a
schurian algebra A = k(&)/], for A a quiver without oriented cycles. This description
was given by E.Ferndndez and M.I.Platzeck, and will be an important tool in this work.

2) ggpo = (B)o

b) (AT(A))l = (A), U {oy, - ay} where {y;,---4,} is the set of maximal non zero
paths m A, «,, is an arrow starting at the endpoint of 7; and ending at the origin
of v; .

The relations in &T(A) are the following:

i) il 6; and é; are directed cycles having the same origin, then & = &, in T'(A).

ii) Let ; for ¢ = 1,2 be paths in &T(A) and T for ¢ = 1,2 be the set of paths § in
&T(A) such that ;6 or év; is a directed cycle.

If Ty = Iy then 41 = v, in T(A).



iii) The composition of n 41 arrows in an oriented cycle of length n in A A) is zero in

T(A).
iv) The composition of arrows not belonging to a same cycle is zero in T'(A).

We illustrate this description with the following examples:

— — o« M

Example 1.1 Let Ay = kA, with A, : % ! ,_/“
] J}A’

3

According lo the preceding description, A'T(A,) is given by the quiver with relations

v dlx' °()_ dl _ 0(]_0(‘ (l O(?_ :Yl o‘zo(‘Y": O)
)
K ¥, & R -
*2 "y %2 73 Ay = 3% ¥, %3 = Y, ¥ O‘,Yz =0,
ATt A3ty ¥, = o, , ¥
' A3 v & o= Ay ¥, =0,
n\“‘B .

) ) “ e a,
Example 1.2 Let A, = kAT, with A, - .4/3\.

and I generated by oyoy — agas. Then T(Ay) 2 T(Ay), although Ay £ A,.
\
The following resull concerns algebras of finite global dimension with the same trivial
extension, in the case one of them is hereditary.

Theorem 1 Let A be a quiver withoul oriented cycles and A be a basic finite dimensional

k- a/gebm If T(A) = T(/cA) and A has finite global dimension then A is tilled iterated
of type A.

Proof: The proof is based on known results about derived categories and repetitive al-
gebras ([1] and [3]).

From Prop. 2. -7 of [1] we get that the repctitive algebra A of A is isomorphic to the repet-
itive algebra kA of kA. In particular, we obtain that the triangulated category mod(A)

is triangle equivalent to mod(kA) Since A and kA have finite global dimension we have
the diagram:

mod(A) ——s 7)7.0(1(1?:2&)

DY(A) DY (kA)




Where = denoles a triangle equivalence. Thus D*(A) is triangle equivalent to ,I)b(/cli),
and therefore A is an iterated tilted algebra of type A (sec [1] or [3]). O
The following example, also considered in [3], shows that the above. lhcomm does not hold
il the global dimension of A is not finite.

Example 1.3 Let A = k(A) with A ./—\.

Let A =k(AN/T with A’ : 1/\
r

In this case T(A) ~ T(A") and gldim(A') =
The following known results will be very useful for our purposes:

Theorem 2 If A is s and iterated tilted algebra of type A then. T(A) s stable equivalent
toT (LA)

Proof: See [6]. O

Theorem 3 If A is a basic finite dimensional k-algebra,the following are equivalent:
a) T(A) is of finite representalion, type.
b) There exists a tilted algebra B of Dynkin type A such thal T(A) ~T(B).

¢) A is tilted iterated of Dynkin type A.
Proof: See [1],[6] and [2]. O

2 Main results.

We start this section giving a characterization of modules M over the quotient algebra
A modulo an ideal generated by arrows. Then we go on to study the case when A is the
trivial extension of an artin algebra A. Finally, we give an application to the construction
of the Auslander-Reiten quiver of some iterated tilted algebras.

It is well know thal when a simple module .S is a composition factor of M in mod(A)
then there are maps from the projective cover Py(S) of S to M, and from M to the
injective envelope I(S) of S.

The following Lemma shows that these maps can be choosen with non zero composition.

A



Lemma 4 Let A be an artin ring and b : Po(S) — M a non zero morphism in mod(A),
with S a simple module. Then there is a morphism t : M — Io(S) such that th # 0.

Proof: Since h : Py(S) — h(P) is an essential epimorphism it follows that h(P)/rad(h(P)) ~
S.

Then we have a commutative diagram '

S = W(P)/rad h(P) —"— M/rad h(P)

|

Io(S)

where ¢,7,7' and 7,7 are the corresponding inclusions and canonical projections,
respectively. Thus there is a morphism # : M/rad(h(P) — Io(S) such that t'i' = 7
Then t = t'm satisfies that th = jx'h is non zero, proving the Lemma. O

Lemma 5 Let A = kA/T where T is an admissible ideal. Let o i — § be an arrow in
A and M € mod(A).

The following conditions are equivalent:
A\
a) @M #0.

b) Homy(rs, M) : Hom (P, M) — Hom(P;, M) is non zero, where rg: Py — D
is the right mulliplication by w.
Proof: Assume that @i # 0 and let m € M such that am # 0. Then f: P — M
defined by f(A\&) = Aeim  for )\ € A, is an A-homomorphism and f(@) =am # 0. S
Ir2(€) = f(e;a) = [(@) # 0, thus frz # 0, proving that a) implies b).
Assume now that Homy(rg,M) # 0, and let [ : P. — M such Lhat frz # 0. Then
0# fra(&) = f(ga) = f(a) = af(e) € @M. So &M # 0, proving that b) implies a). O

Lemma 6 Let A = k&/[ where I is an admissible ideal. Let o : 1 —s J be an arrow in
A and M € mod(A). Then:

a) If aM #0 there are morphisms f: Py - M, ¢: M — I; such that gf # 0.

b) Assume thal Homy(rgz, [;) - Homy (P, 1;) — Hom(P;, 1;) is « monomorphism,
where rz : P; — P; is the right multiplication by @.

If there are morphism f: P; — M, g: M —I; with gf #0, then aM # 0. |

<t



Proof: a) From Lemma 5 we know that there is a non zero morphism f : P; — A
such that frz: P; — M is non zero. Then from Lemma 4 there is g : M — I; such that
gfrz # 0, and consequent]y gf #0.

b) We assume that Homa(rs, I;) is a monomorphism and let [ : P — M, g: M —I;
such that ¢f # 0. Then Homa(rs I;)(9f) = (qf)1CY = g(frz), proving that frz # 0.
Thus Homa(rz, [;)(f) # 0 and by Lemma 5 we ‘get that @M # 0. O

The preceding lemmas can be strengthened when A is the trivial extension of an algebra
A, giving the follomng useful result.

Lemima 7 Let A = LA/I be a schurian algebra with I an admissible ideal, A a quiver
without oriented cycles and a1 ¢ — j an arrow in A (A Then the following conditions
are equivalents for a T'(A)-module M.

a) aM #0.
b) There are morphisms I LM M P; with gf #0.

Proof: Since T'(A) is a symmetric algebra then F; = I; for any vertex 7, s0 Lemma 6 a) -
implies that a) = b).

To conclude that b) = @) we only nced to prove that the hypothesis of Lemma 6 b) are
satisfied. This is, we nced to prove that

HomT'(A)(r;, P;): HomT(A)(Pi, P;) — HomT(A)(Pj,Pj)
is a monomorphism. Since A is schurian and A without oriented cycles we can use
the description of T'(A) given by E.Fernandez and M.L Platzeck (see preliminaries) and

conclude that dimk(HomT(A)(Pi,Pj)) = 1. So the non zero morphism ]1omT(A)(ra—, ;)
is a monomorphism. O '

As a consequence of the preceding Lemma we obtain the following result.

Theorem 8 Let A = AA/I be a schurian algebra with I an admissible ideal, A a quiver
withoul oriented cycles. Lel ;@ a; — b; be arrows in AT Ay for 1 =1,2,---t. Then the
following conditions are equivalent for ¢ T'(A)-module M.

a) M isa T(A)/ <@y, @ > - module.

b) If f: Py — M, g: M — P, are morphisms in mod(A), then their comoposition
gf is zero, for alli=1,2,---t.

Proof: Follows from preceding lemma. O

The following corollary is important to describe the Auslander-Reiten quiver of iterated
tilted algebras of Dynkin type. !



g

Corollary 9 Let A = AA/I be a schurian algebra with I an (m'm?ssvblc 7deal A a qmvm‘
withoul oriented cycles. e

Let ; : a; — b; be arrows in A](A Jor i =1,2,---t. Il N is offnite representalion
type, then the following conditions are equivalent for a T(A)-module M.

a) M isa T(A)] <@, ---,a@ > - module.

b) Any cliain of irreducible maps
S S TS S
with Xo= P, , X, =P has zero composition, for all 1 =1,2,---¢.

Proof: According to Theoremn 8 we only need to prove that if T(/\) is of finite repre-

sentation type then AA has no oriented cycles. This was proven by K. Yamagata in [8].
]

Assume now that A is an iterated tilted algebra of Dynkin type A. Then 7 (A) is of
finite representation type (see [1] and [2]), so the Corollary applies. It follows from (1]
pag 176 that there is a tilted algebra A’ such that T(A) ~ T(A"). In many cases one can
even choose such A’ Lo be hereditary. :

To describe the Auslander-Reiten quiver of A we proceed in the following way. We
start by describing the quiver and relations of T(A), using the descriptlion of A. To describe
fT (A We look for an algebra A" such that T'(A") can be described, and T(A) =T(A"). For

example, we know ([7]) how to describe T'(A") if A" is hereditary. The algebras A’ such

that T'(A) = T'(A") arc easily constructed ([5]): for each cycle ¢ in T'(A) we choose cxactly
one arrow .. Then the quotient algebra A" = T(A)/ < {a.}. > satisfies T(A) ~ T(A.
In the following examples we show how this can be done, and how to describe FA

Example 2.1 Let Q be a quiver Xyl e 3 B nd A = kQ/I , where I is
generated by azaszq;.
Ay
Then A T(A) is 1_"('_;‘.@.“ with the corresponding relations, as
described in seclion 1. o
We choose the arrows as in the cycle asaga; , and as in the cycle azasay . Then

A =T(A)] < ag,a5 >= kD, is the heredilary algebra given by the quiver
L/’
D4 : ‘—-’.\,
Since T(A) >~ T(kDy) 1tfollows that A in an iterated tilled algebra

Ay

3

2

of tipe Dy = PRI



and f].(A) is given by:

l I
::;L{

Now we use Corollary 9 to describe FA mnside [—"T(A) = FT(D4)- [or this purpose we

write N = k(T(Dy))] < aqyas >, an look for the non zero paths in T,:X from Ps to P,
and from Py to Py. Then we delele from the quiver thg modules wich occurs in those paths.




/L\/ ;\.»;l
NN N

Example 2.2 el A as is Example 2. 1. There are other algebras A” such thal T(A") =

T(A). We dlustrate how to construt one of them, and ils Auslander-Reiten quiver.

We choose the arrow «y , which belongs to both oriented cycles in T(A). Then A” =

T(A)) < az > s the path algebra of the quiver .‘d'/"'\d{‘ with conmutativity
. 2‘—}_ :‘(/'*33

With @ we indicate the non zero paths from Py to Py .

relation.
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