

### INFORME TÉCNICO INTERNO

N° 59

### INSTITUTO DE MATEMATICA DE BAHLA BLANCA

INMABB (CONICET - UNS)



UNIVERSIDAD NACIONAL DEL SUR

Avda. ALEM 1253 - 8000 BAHIA BLANCA

- 1997 -



## INFORME TÉCNICO INTERNO Nº 59



# THE AUSLANDER-REITEN QUIVER OF SOME QUOTIENTS OF TRIVIAL EXTENSIONS OF ARTIN ALGEBRAS

Octavio Mendoza

María Inés Platzeck

Departamento de Mat emática Universidad Nacional del Sur

**INMABB** 

**CONICET - UNS** 

AÑO 1997



# THE AUSLANDER-REITEN QUIVER OF SOME QUOTIENTS OF TRIVIAL EXTENSIONS OF ARTIN ALGEBRAS

Octavio Mendoza Hernández\* — María Inés Platzeck

### INTRODUCTION

Let  $A=k(\vec{\Delta})/I$ , where  $k(\vec{\Delta})$  is the path algebra of the quiver  $\vec{\Delta}$  over a field k, and I an admisible ideal. Let  $\alpha_1, \dots \alpha_t$  be arrows in  $\vec{\Delta}$ . In this paper we give a necessary and sufficient condition for an A-module M to be a module over the quotient algebra  $A/<\alpha_1, \dots \alpha_t>$ . This extension  $T(\Lambda)$  of a schurian algebra  $\Lambda$  then  $\Lambda$  is symmetric. If A is, moreover, the trivial arrows, so the above applies. In this way we get information about the  $\Lambda$ -uslander-Reiten quiver  $\vec{\Gamma}_{T(\Lambda)}$  of  $\Lambda$  from the  $\Lambda$ -uslander-Reiten quiver  $\vec{\Gamma}_{T(\Lambda)}$  of  $T(\Lambda)$ .

This is particularly useful where  $T(\Lambda)$  is of finite representation type, case in which we obtain a complete description of  $\Gamma_{\Lambda}$  from  $\Gamma_{T(\Lambda)}$ . This case is interesting because  $\Lambda$  is an iterated tilted algebra of Dynkin type if an only if  $T(\Lambda)$  is of finite representation type. Moreover, this is the case if and only if  $T(\Lambda) = T(\Lambda')$ , with  $\Lambda'$  a tilted algebra (see[4] and [2]).

In many cases one can choose  $\Lambda'$  to be hereditary and such that  $T(\Lambda) = T(\Lambda')$ . The  $\Lambda$  uslander-Reiten quiver of trivial extensions of hereditary algebras can be constructed (see [7]), so we can construct  $\vec{\Gamma}_{\Lambda}$  in these cases. We describe this procedure at the end of the section 2, giving also some examples to illustrate the techniques used. The fundamental tool in this work is a description, given by E.Fernández and M.I.Platzeck, of the quiver and relations of the trivial extension  $T(\Lambda)$  of a schurian algebra  $\Lambda = k(\vec{\Delta})/I$ , for  $\vec{\Delta}$  a quiver without oriented cycles, which we recall in the first section.

### 1 Preliminaries

Throughout the paper k denotes a field,  $k\vec{\Delta}$  the path algebra associated to the finite quiver  $\vec{\Delta} = ((\vec{\Delta})_0, (\vec{\Delta})_1)$ , where  $(\vec{\Delta})_0$  is the set of vertices and  $(\vec{\Delta})_1$  the set of arrows of  $\vec{\Delta}$ .

<sup>\*</sup>Supported by a fellowship from CONICET, Argentina.

The authors gratefully acknowledge a grant from CONICET, Argentina.

Also, we denote by  $\Lambda$  a finite dimensional k-algebra of the form  $\Lambda = k(\vec{\Delta}_{\Lambda})/I$ , where  $\vec{\Delta}_{\Lambda}$  is a quiver and I an admissible ideal. It is well known that when k is algebraically closed then any finite dimensional basic k-algebra is of this form.

Let  $mod(\Lambda)$  denote the category of finite generated left  $\Lambda$ -modules and  $D_{\Lambda}$  the usual duality

 $Hom(-,k): mod(\Lambda) \to mod(\Lambda^{op}).$ 

We also assume that  $e_i$  denotes the trivial path corresponding to the vertex i, moreover  $S_i$ ,  $P_i$  and  $I_i$  are the corresponding simple, projective and injetive indecomposable modules respectively.

The trivial extension  $T(\Lambda)$  of  $\Lambda$  by the  $\Lambda - \Lambda^{op}$  bimodule  $D_{\Lambda}(\Lambda)$  is defined to be the k-vector space  $\Lambda \coprod D_{\Lambda}(\Lambda)$  endowed with a multiplicative structure given by

$$(\lambda,\varphi)(\mu,\psi)=(\lambda\mu,\lambda\psi+\varphi\mu) \ \text{ for } \ \lambda,\mu\in\Lambda \ \ \text{ and } \ \ \varphi,\psi\in D_{\Lambda}(\Lambda).$$

The map  $f: T(\Lambda) \to D_{T(\Lambda)}(T(\Lambda))$  defined by  $[f(\lambda, \varphi)](\mu, \psi) = \varphi(\mu) + \psi(\lambda)$  is a  $\Lambda - \Lambda^{op}$  bimodule isomorphism, so that  $T(\Lambda)$  is a symmetric algebra and therefore selfinjective. On the other hand, the canonical epimorphism

$$\pi:T(\Lambda)\to \Lambda$$
 ,  $\pi(\lambda,\varphi)=\lambda$  for  $\lambda\in \Lambda$  and  $\varphi\in D_\Lambda(\Lambda)$ 

has kernel  $D_{\Lambda}(\Lambda)$  an induces an embedding of  $mod(\Lambda)$  in  $mod(T(\Lambda))$  which identifies the category  $mod(\Lambda)$  with the full subcategory of  $mod(T(\Lambda))$  whose objects are the  $T(\Lambda)$ -modules M such that  $D_{\Lambda}(\Lambda)M=0$ . In this way the vertices of the Auslander-Reiten quiver  $\vec{\Gamma}_{\Lambda}$  of  $\Lambda$  can be identified with vertices of the Auslander-Reiten quiver of the trivial extension  $T(\Lambda)$  of  $\Lambda$ .

We will describe next the quiver and relations of the trivial extension  $T(\Lambda)$  of a schurian algebra  $\Lambda = k(\vec{\Delta})/I$ , for  $\vec{\Delta}$  a quiver without oriented cycles. This description was given by E.Fernández and M.I.Platzeck, and will be an important tool in this work.

- a)  $(\vec{\Delta}_{T(\Lambda)})_0 = (\vec{\Delta})_0$ .
- b)  $(\vec{\Delta}_{T(\Lambda)})_1 = (\vec{\Delta})_1 \cup \{\alpha_{\gamma_1}, \dots \alpha_{\gamma_t}\}$  where  $\{\gamma_1, \dots \gamma_t\}$  is the set of maximal non zero paths in  $\Lambda$ ,  $\alpha_{\gamma_i}$  is an arrow starting at the endpoint of  $\gamma_i$  and ending at the origin of  $\gamma_i$ .

The relations in  $\vec{\Delta}_{T(\Lambda)}$  are the following:

- i) if  $\delta_1$  and  $\delta_2$  are directed cycles having the same origin, then  $\delta_1 = \delta_2$  in  $T(\Lambda)$ .
- ii) Let  $\gamma_i$  for i=1,2 be paths in  $\vec{\Delta}_{T(\Lambda)}$  and  $\Gamma_i$  for i=1,2 be the set of paths  $\delta$  in  $\vec{\Delta}_{T(\Lambda)}$  such that  $\gamma_i \delta$  or  $\delta \gamma_i$  is a directed cycle.

If 
$$\Gamma_1 = \Gamma_2$$
 then  $\gamma_1 = \gamma_2$  in  $T(\Lambda)$ .

- iii) The composition of n+1 arrows in an oriented cycle of length n in  $\vec{\Delta}_{T(\Lambda)}$  is zero in  $T(\Lambda)$ .
- iv) The composition of arrows not belonging to a same cycle is zero in  $T(\Lambda)$ .

We illustrate this description with the following examples:

Example 1.1 Let 
$$\Lambda_1 = k\vec{\Delta}_1$$
 with  $\vec{\Delta}_1$ :

According to the preceding description,  $\vec{\Delta}_{T(\Lambda_1)}$  is given by the quiver with relations



Example 1.2 Let  $\Lambda_2 = k\vec{\Delta}/I_2$  with  $\vec{\Delta}_2$ :



and  $I_2$  generated by  $\alpha_1\alpha_2 - \alpha_4\alpha_3$ . Then  $T(\Lambda_1) \simeq T(\Lambda_2)$ , although  $\Lambda_1 \not\simeq \Lambda_2$ .

The following result concerns algebras of finite global dimension with the same trivial extension, in the case one of them is hereditary.

Theorem 1 Let  $\vec{\Delta}$  be a quiver without oriented cycles and  $\Lambda$  be a basic finite dimensional k-algebra. If  $T(\Lambda) = T(k\vec{\Delta})$  and  $\Lambda$  has finite global dimension then  $\Lambda$  is tilted iterated of type  $\vec{\Delta}$ .

Proof: The proof is based on known results about derived categories and repetitive algebras ([1] and [3]).

From Prop. 2.7 of [4] we get that the repetitive algebra  $\hat{\Lambda}$  of  $\Lambda$  is isomorphic to the repetitive algebra  $k\vec{\Delta}$  of  $k\vec{\Delta}$ . In particular, we obtain that the triangulated category  $\underline{mod}(\hat{\Lambda})$ is triangle equivalent to  $\underline{mod}(k\vec{\Delta})$ . Since  $\Lambda$  and  $k\vec{\Delta}$  have finite global dimension we have the diagram:

$$\frac{mod(\widehat{\Lambda})}{\sim \uparrow} \xrightarrow{\sim} \frac{mod(\widehat{k}\widehat{\Delta})}{\uparrow \sim}$$

$$D^b(\Lambda) \qquad D^b(\overrightarrow{k}\widehat{\Delta})$$

Where  $\stackrel{\sim}{\to}$  denotes a triangle equivalence. Thus  $D^b(\Lambda)$  is triangle equivalent to  $D^b(k\vec{\Delta})$ , and therefore  $\Lambda$  is an iterated tilted algebra of type  $\vec{\Delta}$  (see [1] or [3]).  $\Box$  The following example, also considered in [3], shows that the above theorem does not hold if the global dimension of  $\Lambda$  is not finite.

Example 1.3 Let 
$$\Lambda = k(\vec{\Delta})$$
 with  $\vec{\Delta}$ :
$$Let \ \Lambda' = k(\vec{\Delta'})/I \ \ with \ \vec{\Delta'}: \qquad \qquad I = \langle \, \alpha \, \beta \,, \, \beta \, \alpha \, \rangle \dots$$

In this case  $T(\Lambda) \simeq T(\Lambda')$  and  $gldim(\Lambda') = \infty$ .

The following known results will be very useful for our purposes:

Theorem 2 If  $\Lambda$  is and iterated tilted algebra of type  $\vec{\Delta}$ , then  $T(\Lambda)$  is stable equivalent to  $T(k\vec{\Delta})$ .

Proof: See [6]. □

**Theorem 3** If  $\Lambda$  is a basic finite dimensional k-algebra, the following are equivalent:

- a)  $T(\Lambda)$  is of finite representation type.
- b) There exists a tilted algebra B of Dynkin type  $\vec{\Delta}$  such that  $T(\Lambda) \simeq T(B)$ .
- c)  $\Lambda$  is tilted iterated of Dynkin type  $\vec{\Delta}$ .

**Proof:** See [1],[6] and [2]. □

### 2 Main results.

We start this section giving a characterization of modules M over the quotient algebra  $\Lambda$  modulo an ideal generated by arrows. Then we go on to study the case when  $\Lambda$  is the trivial extension of an artin algebra  $\Lambda$ . Finally, we give an application to the construction of the Auslander-Reiten quiver of some iterated tilted algebras.

It is well know that when a simple module S is a composition factor of M in  $mod(\Lambda)$  then there are maps from the projective cover  $P_0(S)$  of S to M, and from M to the injective envelope  $I_0(S)$  of S.

The following Lemma shows that these maps can be choosen with non zero composition.

**Lemma 4** Let  $\Lambda$  be an artin ring and  $h: P_0(S) \to M$  a non zero morphism in  $mod(\Lambda)$ , with S a simple module. Then there is a morphism  $t: M \to I_0(S)$  such that  $th \neq 0$ .

**Proof:** Since  $h: P_0(S) \to h(P)$  is an essential epimorphism it follows that  $h(P)/rad(h(P)) \simeq S$ .

Then we have a commutative diagram

$$h(P) \xrightarrow{i} M$$

$$\pi' \downarrow \qquad \qquad \downarrow \pi$$

$$S \simeq h(P)/rad \ h(P) \xrightarrow{i'} M/rad \ h(P)$$

$$j \downarrow$$

$$I_0(S)$$

where i,j,i' and  $\pi,\pi'$  are the corresponding inclusions and canonical projections, respectively. Thus there is a morphism  $t': M/rad(h(P) \to I_0(S))$  such that t'i' = j. Then  $t = t'\pi$  satisfies that  $th = j\pi'h$  is non zero, proving the Lemma.  $\square$ 

Lemma 5 Let  $A = k\vec{\Delta}/I$  where I is an admissible ideal. Let  $\alpha: i \to j$  be an arrow in  $\vec{\Delta}$  and  $M \in mod(\Lambda)$ .

The following conditions are equivalent:

- a)  $\overline{\alpha}M \neq 0$ .
- b)  $Hom_A(r_{\overline{\alpha}}, M) : Hom_A(P_i, M) \to Hom_A(P_j, M)$  is non zero, where  $r_{\overline{\alpha}} : P_j \to P_i$  is the right multiplication by  $\overline{\alpha}$ .

**Proof:** Assume that  $\overline{\alpha}M \neq 0$  and let  $m \in M$  such that  $\overline{\alpha}m \neq 0$ . Then  $f: P_i \to M$  defined by  $f(\lambda \overline{e_i}) = \lambda \overline{e_i}m$  for  $\lambda \in A$ , is an  $\Lambda$ -homomorphism and  $f(\overline{\alpha}) = \overline{\alpha}m \neq 0$ . So  $fr_{\overline{\alpha}}(\overline{e_j}) = f(\overline{e_j}\overline{\alpha}) = f(\overline{\alpha}) \neq 0$ , thus  $fr_{\overline{\alpha}} \neq 0$ , proving that a) implies b). Assume now that  $Hom_A(r_{\overline{\alpha}}, M) \neq 0$ , and let  $f: P_i \to M$  such that  $fr_{\overline{\alpha}} \neq 0$ . Then  $0 \neq fr_{\overline{\alpha}}(\overline{e_j}) = f(\overline{e_j}\overline{\alpha}) = f(\overline{\alpha}) = \overline{\alpha}f(\overline{e_i}) \in \overline{\alpha}M$ . So  $\overline{\alpha}M \neq 0$ , proving that b) implies a).  $\square$ 

**Lemma 6** Let  $\Lambda = k\vec{\Delta}/I$  where I is an admissible ideal. Let  $\alpha: i \to j$  be an arrow in  $\vec{\Delta}$  and  $M \in mod(\Lambda)$ . Then:

- a) If  $\overline{\alpha}M \neq 0$  there are morphisms  $f: P_i \to M, g: M \to I_j$  such that  $gf \neq 0$ .
- b) Assume that  $Hom_A(r_{\overline{\alpha}}, I_j) : Hom_A(P_i, I_j) \to Hom_A(P_j, I_j)$  is a monomorphism, where  $r_{\overline{\alpha}} : P_j \to P_i$  is the right multiplication by  $\overline{\alpha}$ .

  If there are morphism  $f : P_i \to M$ ,  $g : M \to I_j$  with  $gf \neq 0$ , then  $\overline{\alpha}M \neq 0$ .

**Proof:** a) From Lemma 5 we know that there is a non zero morphism  $f: P_i \to M$  such that  $fr_{\overline{\alpha}}: P_j \to M$  is non zero. Then from Lemma 4 there is  $g: M \to I_j$  such that  $gfr_{\overline{\alpha}} \neq 0$ , and consequently  $gf \neq 0$ .

b) We assume that  $Hom_A(r_{\overline{\alpha}}, I_j)$  is a monomorphism and let  $f: P_i \to M$ ,  $g: M \to I_j$  such that  $gf \neq 0$ . Then  $Hom_A(r_{\overline{\alpha}}, I_j)(gf) = (gf)r_{\overline{\alpha}} = g(fr_{\overline{\alpha}})$ , proving that  $fr_{\overline{\alpha}} \neq 0$ . Thus  $Hom_A(r_{\overline{\alpha}}, I_j)(f) \neq 0$  and by Lemma 5 we get that  $\overline{\alpha}M \neq 0$ .  $\square$ 

The preceding lemmas can be strengthened when A is the trivial extension of an algebra  $\Lambda$ , giving the following useful result.

Lemma 7 Let  $\Lambda = k\vec{\Delta}/I$  be a schurian algebra with I an admissible ideal,  $\vec{\Delta}$  a quiver without oriented cycles and  $\alpha: i \to j$  an arrow in  $\vec{\Delta}_{T(\Lambda)}$ . Then the following conditions are equivalents for a  $T(\Lambda)$ -module M.

- a)  $\overline{\alpha}M \neq 0$ .
- b) There are morphisms  $P_i \xrightarrow{f} M$ ,  $M \xrightarrow{g} P_j$  with  $gf \neq 0$ .

**Proof:** Since  $T(\Lambda)$  is a symmetric algebra then  $P_{\mathbf{j}} = I_j$  for any vertex j, so Lemma 6 a) implies that  $a \mapsto b$ .

To conclude that  $b \Rightarrow a$  we only need to prove that the hypothesis of Lemma 6 b) are satisfied. This is, we need to prove that

$$Hom_{T(\Lambda)}(r_{\overline{\alpha}}, P_j) : Hom_{T(\Lambda)}(P_i, P_j) \to Hom_{T(\Lambda)}(P_j, P_j)$$

is a monomorphism. Since  $\Lambda$  is schurian and  $\vec{\Delta}$  without oriented cycles we can use the description of  $T(\Lambda)$  given by E.Fernández and M.I. Platzeck (see preliminaries) and conclude that  $dim_k(Hom_{T(\Lambda)}(P_i, P_j)) = 1$ . So the non zero morphism  $Hom_{T(\Lambda)}(r_{\overline{\alpha}}, P_j)$  is a monomorphism.  $\Box$ 

As a consequence of the preceding Lemma we obtain the following result.

**Theorem 8** Let  $\Lambda = k\vec{\Delta}/I$  be a schurian algebra with I an admissible ideal,  $\vec{\Delta}$  a quiver without oriented cycles. Let  $\alpha_i : a_i \to b_i$  be arrows in  $\vec{\Delta}_{T(\Lambda)}$  for  $i = 1, 2, \dots t$ . Then the following conditions are equivalent for a  $T(\Lambda)$ -module M.

- a) M is a  $T(\Lambda)/<\overline{\alpha}_1,\cdots\overline{\alpha}_t>$  module.
- b) If  $f: P_{a_i} \to M$ ,  $g: M \to P_{b_i}$  are morphisms in  $mod(\Lambda)$ , then their comoposition gf is zero, for all  $i = 1, 2, \dots t$ .

**Proof:** Follows from preceding lemma.  $\Box$ 

The following corollary is important to describe the Auslander-Reiten quiver of iterated tilted algebras of Dynkin type.

Corollary 9 Let  $\Lambda = k\vec{\Delta}/I$  be a schurian algebra with I an admissible ideal,  $\vec{\Delta}$  a quiver without oriented cycles.

Let  $\alpha_i: a_i \to b_i$  be arrows in  $\vec{\Delta}_{T(\Lambda)}$  for  $i = 1, 2, \dots t$ . If  $\Lambda$  is of finite representation type, then the following conditions are equivalent for a  $T(\Lambda)$ -module M.

- a) M is a  $T(\Lambda)/<\overline{\alpha}_1,\cdots,\overline{\alpha}_t>$  module.
- b) Any chain of irreducible maps

$$X_0 \xrightarrow{f_1} X_1 \to \cdots \to X_j = M \xrightarrow{f_{j+1}} X_{j+1} \to \cdots \xrightarrow{f_r} X_r$$

with  $X_0 = P_{a_i}$ ,  $X_r = P_{b_i}$  has zero composition, for all  $i = 1, 2, \dots t$ .

**Proof:** According to Theorem 8 we only need to prove that if  $T(\Lambda)$  is of finite representation type then  $\vec{\Delta}_{\Lambda}$  has no oriented cycles. This was proven by K. Yamagata in [8].

Assume now that  $\Lambda$  is an iterated tilted algebra of Dynkin type  $\vec{\Delta}$ . Then  $T(\Lambda)$  is of finite representation type (see [1] and [2]), so the Corollary applies. It follows from [1] pag 176 that there is a tilted algebra  $\Lambda'$  such that  $T(\Lambda) \simeq T(\Lambda')$ . In many cases one can even choose such  $\Lambda'$  to be hereditary.

To describe the Auslander-Reiten quiver of  $\Lambda$  we proceed in the following way. We start by describing the quiver and relations of  $T(\Lambda)$ , using the description of  $\Lambda$ . To describe  $\vec{\Gamma}_{T(\Lambda)}$  we look for an algebra  $\Lambda'$  such that  $T(\Lambda')$  can be described, and  $T(\Lambda) \simeq T(\Lambda')$ . For example, we know ([7]) how to describe  $T(\Lambda')$  if  $\Lambda'$  is hereditary. The algebras  $\Lambda'$  such that  $T(\Lambda) \simeq T(\Lambda')$  are easily constructed ([5]): for each cycle c in  $T(\Lambda)$  we choose exactly one arrow  $\alpha_c$ . Then the quotient algebra  $\Lambda' = T(\Lambda) / < \{\alpha_c\}_c > \text{satisfies } T(\Lambda) \simeq T(\Lambda')$ . In the following examples we show how this can be done, and how to describe  $\vec{\Gamma}_{\Lambda}$ .

Example 2.1 Let  $\vec{Q}$  be a quiver  $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_4)$  and  $(\Delta = k\vec{Q}/I)$ , where I is generated by  $(\alpha_3\alpha_2\alpha_1)$ .

Then  $\vec{\Delta}_{T(\Lambda)}$  is described in section 1. with the corresponding relations, as

We choose the arrows  $\alpha_5$  in the cycle  $\alpha_5\alpha_2\alpha_1$ , and  $\alpha_3$  in the cycle  $\alpha_3\alpha_2\alpha_4$ . Then  $\Lambda' = T(\Lambda)/<\alpha_3, \alpha_5>=kD_4$  is the hereditary algebra given by the quiver

$$D_4$$
:
Since  $T(\Lambda) \simeq T(kD_4)$  it follows that  $\Lambda$  in an iterated tilted algebra of tipe  $D_4 = \frac{\alpha_4}{\alpha_4} \cdot \frac{\alpha_4}{\alpha_4} \cdot \frac{\alpha_4}{\alpha_4} \cdot \frac{\alpha_4}{\alpha_4}$ 

and  $\vec{\Gamma}_{T(\Lambda)}$  is given by:



Now we use Corollary 9 to describe  $\vec{\Gamma}_{\Lambda}$  inside  $\vec{\Gamma}_{T(\Lambda)} = \vec{\Gamma}_{T(D_4)}$ . For this purpose we write  $\Lambda = k(T(D_4))/\langle \alpha_4, \alpha_5 \rangle$ , an look for the non zero paths in  $\vec{\Gamma}_{\Lambda}$  from  $P_3$  to  $P_1$  and from  $P_4$  to  $P_2$ . Then we delete from the quiver the modules wich occurs in those paths.





Example 2.2 Let  $\Lambda$  as is Example 2.1. There are other algebras  $\Lambda$ " such that  $T(\Lambda) = T(\Lambda)$ . We illustrate how to construt one of them, and its Auslander-Reiten quiver. We choose the arrow  $\alpha_2$ , which belongs to both oriented cycles in  $T(\Lambda)$ . Then  $\Lambda$ " =  $T(\Lambda)/<\alpha_2>$  is the path algebra of the quiver with commutativity relation.

With the path algebra paths from  $P_2$  to  $P_3$ .



Then  $\vec{\Gamma}_{\Lambda}$ , is:



### References

- [1] I. Assem, Tilting Theory an introduction. Topics in algebra. Banach Center publications, volume 26, part 1(1990).
- [2] I. Assem-D. Happel- O. Roldán, Representation-finite trivial extension algebras. J.Pure App. Algebra 33(1984).
- [3] D. Happel Triangulated Categories in the Representation Theory of finite Dimensional Algebras. Cambridge Un. Press. (1988).
- [4] D. Hughes- J. Waschbusch, Trivial extensions of Tilted Algebras.
- [5] E. Fernández and M.I. Platzeck Trivial extensions of artin algebras. Preliminary notes.
- [6] H. Tachikawa and T. Wakamatsu Tilting funtors and stable equivalences for self-injective algebras. J. Algebra 109 (1987).
- [7] H. Tachikawa. Representations of trivial extensions of Hereditary Algebras. Proceedings ICRA II, Ottawa. (1979).
- [8] K. Yamagata, On algebras whose trivial extensions are of finite representation type. LNM 903 (1981).