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Abstract

Recently C. Lizama and H. Prado [6] investigated the inversion of
Stieltjes transforms of Banach valued functions defined on the positive
real line. They worked in the frame of a McBride type space. The con-
sideration of various examples (Laplace, derived, generalized and iterated
Stieltjes, Meijer, theta, etc) strongly suggests that it should be possible
to invert the general transforms classified in the sense of Hirschman &
Widder [4] by means sequences of fractional operators defined in suitable
McBride spaces as in the mentioned Stieltjes case. In order to realize this
generalization, in this article we review and extend properties of McBride
spaces and some fractional integral operators from the scalar to the vector
valued case.

1 Introduction

Throughout this article we 1l denote I =(0, 00) and by E a complex Banach
space. Hirschman & Widder classified the convolution transforms according
to the intrinsic variation diminishing property into two classes: finite and non
finite ones. In particular, the Stieltjes transform belongs to the second class.
Let So(I, E) be the set of C* functions ¢ : I — I such that t*(d* /dt®)p(t) — 0

as t — 0+ or ¢ — 400 for each non negative integer k. By considering

2k—1
Bl O = oo (5) B o), k22

in [6] it is proved that the above differential operators commute with the Stielt-
jes transform S on So(I, E) and that limg , o XpS =1 dso, ). In particular,
Sl = (=01 R (k- VAL L So(I, E), ie. the Stieltjes transform
may be inverted in terms of certain fractional operators (see Preliminaries - Note
8). As the operators considered by H&W have common intrinsic properties re-
lated to their kernels the above situation seems not to be unique. So, instead of
analyzing the inversion of convolution transforms as limits of fractional opera-
tors, in this article we generalize the McBride spaces in order to study general
integral transforms of vector valued functions. This work is part of a recent
joint research by the author, C. Lizama and H. Prado.
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Preliminaries.

. We consider the McBride spaces
Fpu(f, B) ={p e C®({, E): Yo (¢) < 400, k € No},

o0 1/p
with 1 <p < +oo, 4 € Cand 72" (¢) = [ [ ||e* (@*/at*) b+ w(o)]|" ] .
In particular, we also consider
limgo4 tF (d*/dt*) [t=* o(t)] = O,
]Foo,y(]l, E) ={pc Coo(l[, E) :
limy 00 t% (d%/dt*) [t# p(t)] =0, k € No

and we write v, ¥ (p) = sup{”tk (d*/dt*) [t—+ <p(t)]|| , i>0}.

. For each X\ € C the operator t* ¢ = t* (t) is a homeomorphism between
Fp (L, E) and F, , A (I,E). Likewise, the usual derivative operator d/dt
is linear and bounded between F,, , (I, E) and F,, ,—1 (I, E).

. We recall that a function ¢ : I — E is said to be Bochner measurable if it
is an almost everywhere limit (with respect to the the Lebesgue measure
on I) of step functions. This is equivalent to say that @ is essentially
separately valued (i. e. there exist a null subset Z of I such that ¢(I — Z)
is a separable subspace of E) and ¢ is weakly measurable (i. e. z*, ¢
is measurable for every z* € E*) [9]. Thus, it is clear that all functions
previously considered are measurable.

. On the other hand, let us consider the space BPF(LLE) (1 < p < 00) of
measurable functions ¢ : I — E such that |l¢|| € LP(I). In order that
¢ € BP(I,E) it is necessary and sufficient that there exist a sequence of
step functions {¢,},, such that |j¢ — @nll, — 0, or equivalently if ¢ is
measurable and ||| € L}(I)[2).

. The versions of Fubini’s and of bounded convergence theorems for Bochner
integrals [1], that we shall apply in this article, hold under the following
conditions:

Bounded Convergence Theorem

Let {¢,}a>1 € B(I, E) such that |jp,(t)|| < g(t) for almost all ¢ > O,
where g : I - R is integrable. If ¢, — ¢ a. e. then ¢ € B!(I, E) and
Jillea(t) = p(Olldt — 0. Tn particular, f,,(1) dt — f,p(t) dt.

Fubini’s Theorem

If J, K are measurable subsets of I and ¢ € B'(J x K, E) the integrals

J; (s, t) ds and [, (s, t) dt are well defined for almost all ¢ € K and
s € J respectively. Moreover,

t—-)/(p(s, t) ds € BY(K, E), s-——»/ ¢(s, t) dt € B!(J, E)
J K

and fJxK ‘p(s’ t) ds di = fJ [fK (,0(8, t) dt] ds = fK [fJ ‘P(s’ t) ds] dt.
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6. Let (2, X, u) be a finite measure space, 1 < p < oo, f € BP(Q,E) and
g € B? (Q,E*). The function w — (f(w), g(w)) belongs to L'(2,C) and

/ F )y (@) dia(ae) < 1 aoqenmy ol - cm -

Therefore the map f — [, (f(w), g(w)) du(w) is linear and bounded on
B?(§), E). Moreover,

sup{ J 1@, g o) Il = 1} 9l oy

ie. B? (Q,E*) is identified isometrically with a closed subspace of B?($2, E)*.
This identification becomes an isomorphism if and only if E* has the Radon

- Nikodym property with respect to u. In general, a Banach space E has
this property if for every E - valued measure G continuous with respect to
the o - algebra T there exist g € B'(§, E) such that G(C) = [, g(w) du(w)
whenever C € X.

7. Let us consider the following Schwartz spaces
D (E) = {peC®(RE): d*p/da* € B*(R,E), k€ No}, 1 <p < oo,

B(E) = {cpeC‘”(]R,]E): Hnm+ d’“cp/dz":O,keNo},
T{—+0O0

endowed with the topology given by the family of seminorms
(o) = “d’“cp/d:l:k”p, 1<p<oo, ke Ny

The map (Tp,.9)(z) = exp|(1/p — p£)z] p(e®) defines a homeomorphism

between F, P and Dy» (B) if p is finite and between Fo, , and B(E) (the
scalar case is proved in (7], the general case follows easily and formally
from that case). Since in each case C§° (I, E) is dense in F,,, these spaces
are Fréchet spaces.

8. It will be of special interest for us to study of the following Erdelyi - Kober
type operators in the framework of McBride spaces of [E - valued functions

M0 . —-m{n+a @ mn
> = g™ )oImoa: ,

7,0 __ ma (e —m{n+o
K™ = g™ oK2 ox ™nte)

where m > 0, o, n € C, Re(a) > 0 and for z > 0 and adequate ¢’s we
write

e = [T o am
Knp(z) = fz w(t—m% olt) dt™.
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9. HE=C, A+p+0 =1/p’°+ 1/r’, Relo) < 1/p’, f(t) and ¢(2) are
measurable functions on I then

e [ ol <k, o, W

or equivalently

ff@ad
./0 17 zf (z—t))‘ r
under each of the following conditions:
() 1<p<oo, I/p+1/r=1, Re()) < 1;
(i)p>1,r>1, 1/p+1/r>1, 0<Re(N) < 1/p '+1/r;
(iii) 1 <p<oo,1<r<oo, 1/p+1/r>1, Re(A\)<1/p".
(iv)p=1<r <00, Re(A) =0.
Moreover, if f(t) € L*(I), Re(¢) > —1/p ’, Re(n) > ~1/p then the func-
tions I"* f and K"®f are defined a. e. on I and there exists a positive
constant K = K(p, ¢, a, 7, {) such that

<K, 6

[ g <k sl e )| <K A,

if at least one of the following conditions is satisfied:
(v)1<p<oo, p=g;

(vi) l<p<g<oo, 1/p—1/q < Re(a) < 1/p;

(vii) 1 <p < g < oo, Re(a) > 1/p;

(vili) p=1< ¢ < 00, Re(a) > L.(c. {. [5])

10. Our goal is to extend the above formula (1) (or its equivalent form (2)) to
vector functions. Kober’s theorem relies on the known
Schur’s Lemma [10].
Let 1 < p < oo, H(z,y) be an homogeneous function of degree —1 and
let us assume that H(z,1) and f(t) are measurable functions on I. On
writing

Trp(z) = AQH(t, z) f(t) dt, z> 0,
then [T, < K ||f], , where
K=k = ["HE ) = [T HG @

In what follows we shall say that a function H(z, y) is a Schur kernel if it
has the above properties and the constant K is finite.
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3 Fractional Valued Integrals

Lemma 1 Let 1 < p < o0, ¢ : I+ E be a measurable function such that
t/r lle(t)]] € L° (X, E). Then Ty is measurable.

Proof.
Since t — H(t,1) and z — H(l,z) are locally integrable functions on I, Ty
maps measurable step functions into measurable ones. Let {gn}n>1 be an in-
creasing sequence of non negative measurable simple functions such that g, (f) T
1P ||p(t)]] for almost all £ > 0 and let us write

ea(t) = @) 1P |[@)|| 7" gn(t) X (oo (©), t >0, n20.

Hence {¢, }n>1 is a sequence of measurable simple functions that converges a.
e. to @ and t1/P ||, (1)|| = gu(t) < t¥? |lp(t)]|. Thus, if z > O we have

1HGE, 2) ea@ll = 27" [H(E 277, D]l @)

< VP TP IH 2 D] EP el > 0.

By the hypothesis, (3) and the bounded convergence theorem we deduce that
t — H(t, 2) ¢(t) € B'(I,E) and Typ(2) = limp—0o Tae,(2) if 2 > 0. In
particular, since the limit a. e. of measurable functions is measurable (see [3])

Ty becomes measurable and the lemma is proved.[d

Theorem 2 Let o € B? (ILE), 1 < p < co. The function Ty is well defined,
Tay € B? (I,E) and

1Ts llgr g2y < K(H, ) [@llgogis) S

if p = 1, oo, the same conclusion being true for 1 < p < oo if tY/P||p(t)|| €
Lee(D).

Proof.
We note that ¢ — H(t, 2)p(t) = 2=1 H(271 t, 1)¢(t) is measurable for each

z > 0. Since fJ° |H(t, 2)|dt = [;° |H(1, 7! 2)|t7! 2d(271 t) = K < oo, if
p = 0o then

OO
/0 MH(E el dt < K llpmgn <0 2> 0,

and the claim follows in this case. If p = 1 we can write

/H A el x 2) = K (H,1) / e (®)ll de, (5)

so [o 1H (&, 2)e(t)||dt < oo and Tyy(2) is defined for almost all z > 0. By
Fubini’s theorem Ty is measurable. Moreover, if {¢,}.>1 is a sequence of

131



measurable step functions such that [ ||¢(¢) — ¢, (t)|| d¢ — O then

/Ooo “ /ow H(t, 2) [p(t) — ¢, (t)] dt|| dz

IA

/ " le®) - en @l / TIHG, ) dx dt

K, [ " o)~ wa ()l dt,

i. e. Ty € BY(I,E) and by (5) the result follows in this case.
If 1 < p < oo we write

[ 1ate, 5 et =
[ G () (e F
~[Cwor @) el [ el
P 1/p
2| < KU Nellwam < 000

IA

By Lemma 2.1 the function Ty is measurable and

[/0°° “ /ow H(t, z)p(t)dt

The next lemma generalizes the case of scalar functions (see [7], Th. 2.2, page
14) and it shows that the conditions of lemma 2.1 are only apparent on McBride
spaces.

Lemma3 If1 < p < oo, p € C, ¢ € Fp,(LLE) then t1/7~Re(t) (1) ¢
L>(I, E).

Proof.

Given z* € E* we have 2*, ¢ € F;, ,(I,C) and (2% ¢) < ||lz*|| v2*(z*, )
for k € Ny. From [7] we obtain that

sup{ t1/P7Re() |z*(o(1))]: ¢ >0} < o0

if z* € E*. But E is identified isometrically with a closed subspace of E**,
{ ti/pn <p(t)} >0 & E** and by the principle of uniform boundedness we deduce

that sup{ t/P~Re(®) |lo()]] : t > 0} <oo0. O

Corollary 4 Let ¢ € Fpo, 1 < p < oo. Then Ty is everywhere defined and it
is continuous. In particular, Tyyp(2z) — 0 if z — 07 or 2 — +o0.

Proof.
If 2 > 0 then ||H(t,1) @(t2)|| = 277 t~YP |H(¢,1)] (£2)V/?||p(tz)]| and it is
enough to consider (3) and Lemma 2.3. O
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Corollary 5 If 1 < p < 0o the operator Ty is linear and continuous on Fpo.

Proof.
Given ¢ € Fy0, z > 0 we will prove that 2 [Tye](z) = Ty [t ¢ '(t)] (2). In
particular, we already know that ¢t ¢ *(t) € Fp 0 and Ty [t ¢ *(t)](2) € E. For
0<8<1,0<e<zif0<|f|<z—cthen2z>|2+68>2—|6]ls>e If
€ Su < 2z it is easy to see that t ¢ (tu) € F, o and

) < e=1-1/p 4~1/p H +1/p “
It o (tu)| <e ¢ ¢ @ (t) e’

67" [Tre(z+6) — Tup(2)] = 27 Tu [t ¢ *(®)] (2)|| =

- ” fo * L HE ) /0 (@ e+ 63)) — o '(2)} ds dt”

IA

/01 /ooot H (@, D] |l *[t(z + 65)] — ¢ *(¢2)]| dt ds.

But ¢ Jlo [t(z + 6s)] — @ "(t2)|| < 2671 V/P g VP |fe1+1/P ’(t)”]LmOLE) and by

(2) it will suffice to apply the Bounded Convergence Theorem. Inductively it
follows that

L Tl () = T [t”%so(t)] (2), 2 >0, (6)

Therefore Ty € C (I, E) and

(/]I pdz)l/pgK(H, ” (/ﬂ pdt)l/p,

i. e. Tap € Fpo and v50(Tg ) < K(H, p) ¥2%(p) for n € No. O

L el ()

a
" —p(t
il

Corollary 6 IfE** has the Radon - Nikodym property and 1 < p < oo then (4)
holds for each ¢ € BP(I, E) if and only if

/11 <f(z) /KH ¢, Z)w(t)dt> dz

for every functional f € BP '(I, E*).

Proof.
Since Lebesgue measure is o - finite on I, taking into account the Note 6 of
Section 1 the space B? (I, E*)* is isometrically identified with BP(I, E**). If
¢ € BP(L, E) and we asume (4) then Ty € B?(I, E) < B?(I, E**) and

<K lellgeq, g 1 llss @ 5 (7)

[ [, Tap(a)) a2 < Tl ) 17l 50
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On the other hand, if ¢ € BP(I, E) by (7) the linear functional f — { f,Tyy)
is bounded on B? '(I, E*) and its norm is not greater than X ||¢|| a, &) - Thus

we have || Ty @llps g gy < K lollgeq, &y - But Tae € BP(I, E) and the result
follows. [J

Corollary 7 If1 <p < oo, p € C and H is a Schur kernel the linear operator
zt Ty ™% is bounded from Fy, ,(I, E) into itself.

Corollary 8 Letm >0, 0, o, p € C, H, > : I x I — C be given as

(zm _ t'm)a—l

5 2) =m =

he g pmnte) pm(n+1)+p— 1X ©.4] (t).

Then H,J* is a Schur kernel, I,* = x* Ty, me x™# and I* is a bounded
linear operator on ¥y, (I, E) if Re(mn+ p) +m > 1/p and Re(a) > 0.

Proof.
It is evident that H, > is homogeneous of degree —1. Moreover
o0 1
el [ L] de = m [ (1 gt e g
0 0

1
— — g )Re(@)~1 , Re[n+(u—1/p)/m]
(1—w) u du
0

Be{Re(a), Re[n+1+ (¢ — 1/p)/m]} < o0
if Re(mn + ) + m > 1/p and Re(a) > 0. [0

Theorem 8 For each complex a with positive real part I has a linear con-

tinuous Fréchet derivative on Fpo(I, E) if mRe(n) +m > 1/p (for the scalar
case see [8]).

Proof.
We shall write logw = In |w| + iargw for the determination of the argument so
that —m < argw < 7. Given ap € C with positive real part, ¢ € F, oI, E) and
z > 0 we have

" [l_tm/zm]cx—l [l_tm/zm]ao—l

I:,’,;ago(z) - Ig;ao(p(z) =/ T(e) - F(ao) (p(t)tmﬂdtm (8)
a— Qg 0 a — g amn+m
Thus letting & — o we obtain
oI o a
o (#) la=ao= —¥(a0) IL*@(2) + J:2¢(z), (9)
where
z(,m __ tm)a-—l t\™
Jhe = y—m(n+c) / (z____ —{Z mn m
mep(2) = 2 | sl [1-(5) | e @ 0)
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and Y(a) = dflogI'(a)] /da is the usual Buler’s function. If |1 —w| < 1 then
(1-w)* "= (1 —w)* Lexp (a— ap).
Therefore there exists an analytic function A(ca) and a positive number ¢, both
independent of w, so that Re (@) > 0 if |o — ap| < £ and
(1—w)*1  (1—w)o-! ao—1 | €xp (@ — ap) 1
L@~ Tloo) S B s

= (1-w)*"! (a—ap) Ala).
By the maximum modulus theorem we have

[L—2m /2" " /T(@) = [1 —¢™/2™]% " /T(a)
@ —~ Qg

<1 —w)Re)1 max  |A(e)|.
ja—ap|=e

(1)

By using (8) we write

JL_tm/zm]u—l Ll_tm/zm]cxo—x _ _
I'(e) — I'(ao) ‘p(t)tmn+m—l <C tmn+m 1+Re(u)-1/p
a— ag =1 (1 _ tm/zm)l—Re(ao)

(12)

where C is a positive constant determined by (11) and Lemma 2.3. Por (12),
the hypothesis and the bounded convergence theorem it is proved (9). Since
linear combinations of Schur kernels are Schur kernels we write

& [ITep(z) — o0
o | LD 1 gton) st - et

Be(I, E)

az»

(19)

= |z o)
- (H"Z’o"‘—H,,:',’:o)/(a—ao)-i-'/J(ao) H T30~ K, T30 dz"‘p < Bo@, B)

< AP0 ! IHrr:,,’(;z - H":l,,(;zo 1,¢0 7,000 -1/p
= n (‘P) o I a—ag +1/)(0¢0) Hm,O "Km,’p. (tv 1) t dt.

By (11), with the above notation and conditions there exists a positive con-
stant Cy such that

H lea - H 77510
O () B - K ) e = ()
E_tm]a—l . ‘L_tm]ao-—l m
= m tRe(mn+u)+m— 1-1/p (o) T'(co) + 1 '(,[’(ao) - log(l -1 )
a—ap Dloo)  [1— gm]i-oo

(1 — tm)Re(ag)——l

m tRe(m17+u)+m—— 1-1/p
I‘(ao)

IA

[C2 + [9(a0)| — log(1 — ™).
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In general, for a, b € Ithe integral f0°° t*"1(14+¢) "% log(1+t) dt converges.
For , if 0 < v < a there exists T = T(v) > O such that (1+¢) ¥log(l+1) <1
ift > T. Thus >~ (1 +¢)72% log(1 +¢) <t* (1 +¢)~*=)~% and

/ > M1 +6)7°7° log(1 +1) dtg/ i1 41)" @ < o0,
T 0

On the other hand, there exists 0 < § < T such that log(l +¢t) < 1 if
0 <t < 6 and so

& o0
/ 12 1(1 4 1) log(1+t)dt§/ 211 + 1) *bdt < +oo.
0 0

Therefore fol 1%~ 1(1—1¢)"! log(l —t) dt converges absolutely. In particular,
if a = Re(ap), b = Re[n+ (¢ — 1/p)/m] + 1 in (14) we have an integrable
majorant and letting & — ag in (13) we have

po (0le) = Ioe(2)
™ o — g

+ y(a0) Ip(z) - J;’,’;"“’s0(2)) o,

i. e. (9) is the Fréchet derivative with respect to a for @ = ag on Fyo(I, E) of
the operator IJ;*. Now, by (9) and Corollary 2.8 it will suffice to show that J7;*
is a bouded operator on Fpo(l, E). For, let K,7:> : T x I — C be the function

K. me(s _ —m(n+a)—p (zm - tm)a_l 1 1— E " tmn+m+u~1 t
m,p( ) z) =mz I‘(a) og . X(o,z)( )

So J1* = Tk n.e, evidently K,'¢" is a homogeneous function of degree —1,
the integral

[ e Qo gy aa= [ R @
g —m— O — 8 8§ = ’at t~
o T ()] . /o m0

converges and we must only apply Corollary 2.5. [0

Corollary 10 If a has a positive real part and Re(mn + p) +m > 1/p then
I:* hes a linear continuous Fréchet derivative on F (I, E).

Proof.
It suffices to note that J%* = z# Tg,pe 27 4.0

The proofs of the following vectorial propositions are analogous to the scalar
case (c. f. [7]).

Proposition 11 IfRe(a) > 0, Re(mn+pu) +m > 1/p, ¢ € F, (I, E) then

Inp = Ine* (n+a+ 1+ 6/m)p, (15)
where § = z dfdz.
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The right member in (15) is defined if Re(a) > —1 and Re(mm+u)+m > 1/p.
By an analytic continuation argument we may extend I'»* for all complex « such
that Re(a) > —1. Then by an itereted process I’;* is defined for o € C.

Proposition 12 Let Re(mn + p) +m > 1/p. Then

(i) I%* is a linear continuous operator on F, (I, E).

(ii) I7;* has a linear continuous Fréchet derivative with respect to any complex
. In particular, given ¢ € F,, (I, E), z > 0, a — I;%p(z) defines an entire
function.

(iii) The operator I7;* has Frechét derivative with respect to % in the halfplane
Re(mn + 1) +m > 1/p and

a‘lgz'a _ ,—m(n+ta) * (zm _tm)a—l my | E " m
617 q’(z) =z A I‘(a) t IOg » ‘p(t) dat

for ¢ € Fp, (I, E), z > 0. In particular, the operator ¢ — 8I7%%p/8n is bounded
on F, (I, E).!
(iv) I7° is the identity operator on Fp (I, E).

Proposition 13 IfRe(mn+p)+m > 1/p, Re(mn+ma+up)+m > 1/p, a, B are
complex numbers and ¢ € Fp (I, E) then 1T+ [Lep = [motbp,

Corollary 14 I;* is linear continuous on Fy (I, E) if Re(mn + u) + m >
1/p, it being an homeomorphism with (I7;*)~! = IT+*~2 if Re(mn + ma +
#) +m > 1/p. So, Ig is a linear continuous operator between Fp ,(I, E) and
Fpu+ma(l, E) if Re(u)+m > 1/p, becoming an homeomorfism if Re(u+ma) +
m>1/p.

1Observe that 8I™/8n = Ty, where L is the Schur’s kernel
t,m-—l 1—tmjam a-1 mn m
L(t, z)=m ( /™) (E‘) log(-t-) .

zm ') z z
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