A note about U- operators on (n+1)-bounded Wajsberg Algebras

Marina Beatriz Lattanzi

Abstract

The UW_{n+1} -algebras have been defined in [10] as algebras $\langle A, \rightarrow, \sim, \forall, 1 \rangle$, where $\langle A, \rightarrow, \sim, 1 \rangle$ is a (n+1)-bounded Wajsberg algebra (see [13]) and \forall is a U-operator on A, i.e., a unary operation defined on A which satisfies the identities: $\forall x \rightarrow x = 1$, $\forall (x \rightarrow y) \rightarrow (\forall x \rightarrow \forall y) = 1$, $\forall (\forall x \rightarrow \forall y) = \forall x \rightarrow \forall y$.

Moisil's modal operators $\sigma_1, \sigma_2, \ldots, \sigma_n$ that can be defined on a Wajsberg algebra have been studied in [14].

In this note conditions are given on the \forall , \rightarrow and \sim operations, so that in a UW_{n+1} -algebra $\forall \sigma_j = \sigma_j \forall$, $j = 1, 2 \dots, n$ is verified.

It is also shown that if $n \ge 1$ is even or n is odd and ≤ 7 , then the Moisil's modal operators can be defined on any (n+1)-valued Wajsberg algebra on the basis of the unary operations of power and product by a natural number.

The results on Wajsberg algebras and Łukasiewicz algebras can be found in [13, 8] and in [4, 5, 2], respectively. The definitions and properties needed to understand the rest of the text will be described throughout this note.

Let A_1 and A_2 be two algebras with the same universe A; algebra A_1 is said to be a reduct of A_2 if every fundamental operation of A_1 is a term in the language of A_2 .

Let us remember that (see [13]) an algebra $\mathcal{A} = \langle A, \rightarrow, \sim, 1 \rangle$ of type (2, 1, 0) is a Wajsberg algebra (or W-algebra) if the following identities are satisfied:

(W1)
$$1 \rightarrow x = x$$
,

(W2)
$$(x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)) = 1$$
,

(W3)
$$(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$$
,

(W4)
$$(\sim y \rightarrow \sim x) \rightarrow (x \rightarrow y) = 1$$
.

We will denote with W the variety of W-algebras.

We will indicate with C_{n+1} the W-algebra with universe $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$ and the operations defined by:

$$x \to y := min \{1, 1 - x + y\}$$
 and $\sim x := 1 - x$.

On $A \in \mathbf{W}$ the following binary operations can be defined:

(D1)
$$x \lor y = (x \rightarrow y) \rightarrow y$$
,

(D2)
$$x \wedge y = \sim (\sim x \vee \sim y)$$
,

(D3)
$$x * y = \sim (x \rightarrow \sim y)$$
,

(D4)
$$x + y = \sim y \rightarrow x$$
.

For any $A \in \mathbf{W}$ the following properties are verified (see [8, 13]):

(W5)
$$x \rightarrow x = 1$$
,

(W6) $(A, \lor, \land, \sim, 0, 1)$ is a Kleene algebra where $0 = \sim 1$ and $x \leq y$ if and only if $x \rightarrow y = 1$,

(W7)
$$x \rightarrow 0 = \sim x$$
,

(W8)
$$x \le y, z \le t$$
 implies $x + z \le y + t$,

(W9)
$$x \le y$$
, $z \le t$ implies $x * z \le y * t$.

For each $A \in \mathbf{W}$, $x \in A$ and n integer, $n \ge 0$, the power x^n and the product nx can be defined as follows:

(D5)
$$x^n = \begin{cases} 1 & \text{if } n = 0 \\ x^{n-1} * x & \text{if } n \ge 1 \end{cases}$$

(D6)
$$n \cdot x = \begin{cases} 0 & \text{if } n = 0 \\ (n-1) \cdot x + x & \text{if } n \ge 1 \end{cases}$$

Then in W the following property is verified

$$(W10) \ n \cdot (\sim x) = \sim (x^n).$$

The classes of (n+1)-bounded and (n+1)-valued Wajsberg algebras are the subvarieties of **W** generated by chains of length less or equal to n+1 and by the chain of length n+1, respectively.

Definition 1 [10] Let $\langle A, \rightarrow, \sim, 1 \rangle$ be a W-algebra. A U-operator on A is an application $\forall : A \longrightarrow A$ which satisfies the following identities:

- (U1) $\forall x \rightarrow x = 1$,
- (U2) $\forall (x \rightarrow y) \rightarrow (\forall x \rightarrow \forall y) = 1$,
- (U3) $\forall (\forall x \rightarrow \forall y) = \forall x \rightarrow \forall y$.

An algebra $\langle A, \rightarrow, \sim, \forall, 1 \rangle$ is a UW-algebra if the reduct $\langle A, \rightarrow, \sim, 1 \rangle$ is a Wajsberg algebra and \forall is a U-operator on A.

An algebra $\langle A, \rightarrow, \sim, \forall, 1 \rangle$ is a (n+1)-bounded UW-algebra (or UW_{n+1} -algebra) if the reduct $\langle A, \rightarrow, \sim, 1 \rangle$ is a (n+1)-bounded Wajsberg algebra and \forall is a U-operator on A.

Lemma Let A be a UW-algebra. For all $x, y \in A$ and every positive integer m, the following properties are verified:

- (U4) $\forall 0 = 0$,
- (U5) $\forall 1 = 1$,
- (U6) $x \leq y$ implies $\forall x \leq \forall y$,
- (U7) $\forall \sim \forall x = \sim \forall x$,
- (U8) $\forall (\forall x + \forall y) = \forall x + \forall y$,

(U9)
$$\forall x + \forall y \leq \forall (x+y)$$
,

(U10)
$$m \cdot \forall x \leq \forall (m \cdot x),$$

(U11)
$$\forall (\forall x * \forall y) = \forall x * \forall y$$
,

(U12)
$$\forall x * \forall y \leq \forall (x * y),$$

(U13)
$$(\forall x)^m \leq \forall (x^m)$$
.

Proof

(U4) Is an immediate result of (W6) and (U1).

$$(U5) \ \forall 1 = \forall (\forall x \rightarrow \forall x) = \forall x \rightarrow \forall x = 1.$$
 [W5,U3]

$$(U6) 1 = \forall 1 = \forall (x \to y) \le \forall x \to \forall y.$$
 [U5,W6,U2]

$$(\text{U7}) \ \forall \sim \forall x = \forall (\forall x \to 0) = \forall (\forall x \to \forall 0) = \forall x \to 0 = \sim \forall x. \tag{W7,U4,U3}$$

- (U8) Results of (D4), (U7) and (U3).
- (U9) Results of (W6), (U1), (W8), (U6) and (U8).
- (U10) Results of (U9) and (D6) applying induction on m.
- (U11) Results of (D3), (U7) and (U3).
- (U12) Results of (W6), (U1), (W9), (U6) and (U11).
- (U13) Results of (U12) and (D5) applying induction on m.

An algebra $\langle A, \vee, \wedge, \sim, \sigma_1^{n+1}, \dots, \sigma_n^{n+1}, 0, 1 \rangle$, $n \geq 1$, is a (n+1)- valued Łukasiewicz algebra (or L_{n+1} -algebra) if the reduct $\langle A, \vee, \wedge, \sim, 0, 1 \rangle$ is a De Morgan algebra and $\sigma_1^{n+1}, \sigma_2^{n+1}, \dots, \sigma_n^{n+1}$ are unary operators, called Moisil's modal operators, which satisfy the identities (see [5]):

(L1)
$$\sigma_i^{n+1}(x \vee y) = \sigma_i^{n+1}x \vee \sigma_i^{n+1}y, 1 \leq j \leq n,$$

(L2)
$$\sigma_i^{n+1} x \vee \sigma_{i+1}^{n+1} x = \sigma_{i+1}^{n+1} x, \ 1 \le j \le n-1,$$

(L3)
$$\sigma_j^{n+1} x \vee \sim \sigma_j^{n+1} x = 1, \ 1 \le j \le n,$$

(L4)
$$\sigma_i^{n+1} \sim x = \sim \sigma_{n-i+1}^{n+1} x, \ 1 \le i \le n,$$

(L5)
$$\sigma_i^{n+1}\sigma_j^{n+1}x = \sigma_j^{n+1}x, \ 1 \le i, \ j \le n,$$

(L6)
$$x \vee \sigma_n^{n+1} x = \sigma_n^{n+1} x$$
,

(L7)
$$(x \wedge \sim \sigma_j^{n+1} x \wedge \sigma_{j+1}^{n+1} y) \vee y = y, \ 1 \leq j \leq n-1.$$

Example 1 Let n=2. It is easy to see that $\langle C_3, \rightarrow, \sim, \forall, 1 \rangle$ is a UW_{2+1} -algebra, where $\forall 0 = \forall \frac{1}{2} = 0$ and $\forall 1 = 1$. If we consider the structure of three-valued Łukasiewicz algebra of C_3 , we have that $\sigma_2^3 \left(\forall \frac{1}{2} \right) = 0$ whereas $\forall \sigma_2^3 \left(\frac{1}{2} \right) = 1$. Therefore, if we have $\exists x = \sim \forall \sim x$, it results that the class of UW_{2+1} -algebras is not equivalent to the class of monadic three-valued Łukasiewicz algebras introduced by L. Monteiro in [12].

In [14, Theorem 15, pg.16] it is stated that every (n+1)-bounded Wajsberg algebra has a L_{n+1} -algebra reduct. So we have analysed, in the first place, how to define such operators on a (n+1)-bounded Wajsberg algebra with the purpose of determining the conditions on \forall , \rightarrow y \sim operations so that a U-operator commutes with Moisil's modal operators.

A family of unary terms p(n, m)(x), $n, m \ge 0$ of language of the W-algebras is defined by induction in [14] as follows:

(P1) for any
$$n \ge 0$$
, $p(n, 0)(x) = 1$,

(P2) for any
$$m \ge 1$$
, $p(0, m)(x) = 0$,

(P3) if p(r, m)(x) is defined for $r \leq n$ and $m \geq 0$, then

$$p(n+1,m)(x) = \sim ((\sim p(n,m)(x) \rightarrow x) \rightarrow \sim p(n,m-1)(x)).$$

The following properties hold (see [14]):

(P4)
$$p(n,1)(x) = n \cdot x$$
, for every $n \ge 1$,

- (P5) p(n, n + m)(x) = 0, for every $n \ge 0$ and $m \ge 1$,
- (P6) $p(n,n)(x) = x^n$, for every $n \ge 0$.

Besides, in [14, pg. 13] it is stated that if $\langle A, \rightarrow, \sim, 1 \rangle$ is a (n+1)-bounded Wajsberg algebra, then $\langle A, \vee, \wedge, \sim, \sigma_1^{n+1}, \ldots, \sigma_n^{n+1}, 0, 1 \rangle$, is a (n+1)-valued Łukasiewicz algebra, where for every $1 \leq i \leq n$, the unary operators σ_i^{n+1} are the interpretation of terms p(n, n+1-i) on A, i.e., $(\sigma_i^{n+1})^A = (p(n, n+1-i))^A$.

As follows in Example 2 we shall show that the previous affirmation is false.

Example 2 Let $A = C_{2+1} \times C_{3+1}$; it is clear that A is a (3+1)-bounded but not a (3+1)-valued Wajsberg algebra. For n=3, the following polynomials are obtained:

$$egin{array}{lcl} \sigma_1^{3+1}(x) &=& p(3,3)(x) = x^3, \\ \sigma_2^{3+1}(x) &=& p(3,2)(x) = (x+x^2)*(2\cdot x), \\ \sigma_3^{3+1}(x) &=& p(3,1)(x) = 3\cdot x. \end{array}$$

For $x = (\frac{1}{2}, 0) \in A$ we have that $\sigma_2^{3+1}((\frac{1}{2}, 0)) = (\frac{1}{2}, 0)$, then $\sigma_2^{3+1}((\frac{1}{2}, 0)) \vee \sigma_2^{3+1}((\frac{1}{2}, 0)) = (\frac{1}{2}, 1)$ and the property (L3) is not verified.

Remark We cannot always define the operators σ_i^{n+1} , $1 \leq i \leq n$ on a (n+1)-bounded W-algebra, so that it can be endowed with a structure of (n+1)-valued Łukasiewicz algebra. Indeed, every (3+1)-valued Łukasiewicz finite algebra is direct product of chains with 2 and/or 4 elements (see [3, pg. 120]) then its cardinal must be a power of 2. Therefore the (3+1)-bounded Wajsberg algebra $C_{2+1} \times C_{3+1}$ is not a (3+1)-valued Łukasiewicz algebra.

In [14, Theorem 15, pg. 16] it is stated that if A is a W-algebra then the following conditions are equivalent (part (ii) has been omitted):

- (i) A admits a (n+1)-valued Łukasiewicz algebra reduct, for some n > 1,
- (iii) A is n+1 bounded for some $n < \omega$.

where n is the same in (i) and (iii).

But the remark above contradicts the previous affirmation.

On the other hand, the following result is verified:

Theorem 1 If A is a (n+1)- bounded W- algebra, then A admits a (m+1)- valued Łukasiewicz algebra reduct, where m is the least common multiple of the integers $r, 1 \le r \le n$. That is to say, if $\langle A, \rightarrow, \sim, 1 \rangle$ is a (n+1)- bounded Wajsberg algebra, then $\langle A, \vee, \wedge, \sim, \sigma_1^{m+1}, \ldots, \sigma_m^{m+1}, 0, 1 \rangle$ is a (m+1)- valued Łukasiewicz algebra where $0 = \sim 1$, m is the least common multiple of the integers $r, 1 \le r \le n$ and for every $a, b \in A$:

$$x \lor y = (x \rightarrow y) \rightarrow y,$$
 $x \land y = \sim (\sim x \lor \sim y),$ $\sigma_i^{m+1}(x) = p(m, m+1-i)(x), \ 1 < i < m.$

Proof It is simple to check that the interpretation of the unary terms p(m, m+1-i)(x), $1 \le i \le m$, on C_{r+1} for any $1 \le r \le n$ satisfies the equations (L1) to (L7).

¿From this analysis we can conclude that in order to study the relation between modal operators and the U-operator, it is necessary to restrict ourselves to (n+1)-valued Wajsberg algebras.

Theorem 2 Let $\langle A, \rightarrow, \sim, 1 \rangle$ be a (n+1)-valued Wajsberg algebra and $\forall: A \longrightarrow A$ a U-operator. If for every $x, y \in A$ the two following properties are satisfied:

(U14)
$$\forall (x+y) \leq \forall x + \forall y$$
,

(U15)
$$\forall (x * y) \leq \forall x * \forall y$$
,

then, it is verified that:

(U16)
$$\forall \sigma_i^{n+1}(x) = \sigma_i^{n+1}(\forall x)$$
, for all $i, 1 \leq i \leq n$, whereas for every $x \in A$

(1)
$$\sigma_i^{n+1}(x) = p(n, n+1-i)(x)$$
.

Proof From (1), it is enough to prove

(2)
$$p(n, n+1-i)(\forall x) = \forall p(n, n+1-i)(x)$$
, for all $x \in A$ and $1 \le i \le n$.

We will prove (2) by induction on n. For n = 1, it is a direct consequence of (P4). Suppose now that (2) is true for every r < n, i.e., it is verified that:

(3) $p(r, r+1-i)(\forall x) = \forall p(r, r+1-i)(x)$, for every $x \in A$, r < n and $1 \le i \le r$, and we shall prove that it holds for n.

From (P3), (D3) and (D4) it follows

(4)
$$p(n, n+1-i)(\forall x) = (\forall x + p(n-1, n+1-i)(\forall x)) * p(n-1, n-i)(\forall x).$$

For $r = n-1$, (5) results from (3):

(5)
$$p(n-1, n-i)(\forall x) = p(r, r+1-i)(\forall x)$$

 $= \forall p(r, r+1-i)(x)$
 $= \forall p(n-1, n-i)(x).$

On the other hand, considering r = n - 1 and j = i - 1 it is possible to write

(6)
$$p(n-1, n+1-i)(\forall x) = p(r, r+2-i)(\forall x) = \forall p(r, r+1-j)(\forall x).$$

If i > 1, $1 \le j < i \le r$ then, considering (3) the following identities are verified:

(7)
$$\forall p(r, r+1-j)(\forall x) = \forall p(r, r+1-j)(x) = \forall p(n-1, n+1-i)(x).$$

For i = 1, (8) results from (P5):

(8)
$$p(n-1,n)(\forall x) = 0 = \forall p(n-1,n)(x),$$

therefore, from (6), (7) and (8) we obtain

(9)
$$p(n-1, n+1-i)(\forall x) = \forall p(n-1, n+1-i)(x).$$

Equality (2) is a consequence of (4), (5), (9), (U9), (U14), (U12), (U15), (P3), (D3) and (D4). Indeed:

$$p(n, n+1-i)(\forall x) = (\forall x + \forall p(n-1, n+1-i)(x)) * \forall p(n-1, n-i)(x)$$

$$= \forall (x + p(n-1, n+1-i)(x)) * \forall p(n-1, n-i)(x)$$

$$= \forall ((x + p(n-1, n+1-i)(x)) * p(n-1, n-i)(x))$$

$$= \forall p(n, n+1-i)(x).$$

Theorem 2 takes us to the following definition:

Definition 2 Let \forall be a U-operator on a Wajsberg algebra A. We shall say that \forall is a universal quantifier if the two following properties are satisfied:

(i)
$$\forall (\sim x \rightarrow y) \rightarrow (\sim \forall x \rightarrow \forall y) = 1$$
,

(ii)
$$\forall \sim (x \rightarrow \sim y) \rightarrow (\sim (\forall x \rightarrow \sim \forall y)) = 1$$
.

It is easy to verify that if \forall is a universal quantifier on a Wajsberg algebra A, then for every $x, y \in A$ and every positive integer m, the following properties are satisfied:

(U17)
$$\forall (m \cdot x) \leq m \cdot \forall x$$
,

(U18)
$$\forall (x^m) \leq (\forall x)^m$$
.

The monadic MV_{n+1} —algebras are defined as pairs $\langle A, \exists \rangle$, where A is a MV_{n+1} —algebra (i.e., A is polynomially equivalent to a (n+1)—valued Wajsberg algebra) and $\exists : A \longrightarrow A$ is an application that verifies the following axioms (see [15, 16, 9]):

(M0)
$$\exists 0 = 0$$
,

(M1)
$$x \leq \exists x$$
,

$$(M2) \ \exists (x*\exists y) = \exists x*\exists y,$$

(M3)
$$\exists (x + \exists y) = \exists x + \exists y,$$

$$(M4) \ \exists (x * x) = \exists x * \exists x,$$

(M5)
$$\exists (x+x) = \exists x + \exists x$$
.

It is proved in [9] that the monadic MV_{n+1} -algebras are polynomially equivalent to the (n+1)-valued Łukasiewicz algebras for n=2 and n=3. Particularly, it is shown that every monadic MV_{3+1} -algebra has a structure of monadic L_{3+1} -algebra (see [1]) with respect to

When Mosil's modal operators on a (n+1)-valued Wajsberg algebra are defined as in Theorem 2, i.e., $\sigma_k^{n+1}(x) = p(n, n+1-k)(x)$, for each $1 \le k \le n$, it results

If A is a (3+1)-valued Wajsberg algebra, then $(x+x^2)*(2\cdot x)=3\cdot x^2$, for every $x\in A$.

It is well known that the chain C_{n+1} with the lattice operations defined on the basis of their natural order, the negation defined by $\sim x := 1 - x$ and the operators

$$\sigma_k^{n+1}\left(\frac{j}{n}\right) := \left\{ \begin{array}{ll} 0 & \text{if } k+j \leq n \\ 1 & \text{otherwise} \end{array} \right., \, \text{for every } k,j, \, 1 \leq k \leq n \, \, \text{and} \, \, 0 \leq j \leq n,$$

is a L_{n+1} -algebra.

On the other hand, if we consider the W-algebra C_{n+1} , from (P4) and (P6) we have that $\sigma_1^{n+1}(x) = p(n,n)(x) = x^n$ and $\sigma_n^{n+1}(x) = p(n,1)(x) = n \cdot x$, for every $x \in C_{n+1}$ and $n \ge 1$.

In the Theorem 3, which is developed below, we shall prove that every Moisil's modal operator on the chain of length n + 1, and therefore on any (n + 1)-valued Wajsberg algebra, can be defined in terms of the power and product unary operations by a natural number (see (D5) and (D6)).

Theorem 3 Let n be an integer, $n \geq 3$, $C_{n+1} \in \mathbf{W}$ and, for every k, j, 1 < k < n and $0 \le j \le n$, $\sigma_k^{n+1}\left(\frac{j}{n}\right) = \begin{cases} 0 & \text{if } k+j \le n \\ 1 & \text{otherwise} \end{cases}$. Then, for any $x \in C_{n+1}$ it is verified that:

- (a) If n is even:
 - (i) $k \leq \frac{n}{2}$ implies $\sigma_k^{n+1}(x) = n \cdot x^{\frac{n}{2}-k+2}$
 - (ii) $k > \frac{n}{2}$ implies $\sigma_k^{n+1}(x) = ((k+1-\frac{n}{2})\cdot x)^n$.
- (b) If n is odd and n < 7:
 - (i) $k < \frac{n+1}{2}$ implies $\sigma_k^{n+1}(x) = n \cdot x^{\frac{n+1}{2} k + 2}$
 - (ii) $k \geq \frac{n+1}{2}$ implies $\sigma_k^{n+1}(x) = ((k+1-\frac{n-1}{2})\cdot x)^n$.

Proof

- (a) Let n be even.
 - (i) Let $2 \le k \le \frac{n}{2}$. If $\sigma_k^{n+1}\left(\frac{j}{n}\right) = 0$, then $k + j \le n$, hence resulting:

(1)
$$(\frac{n}{2}-k+2)(n-j) \geq (\frac{n}{2}-k+2)k$$
.

On the other hand, conditions (2), (3) and (4) below are equivalent:

- (2) $(\frac{n}{2} k + 2)k \geq n$,
- (3) $-k^2 + (\frac{n}{2} + 2)k n > 0$,
- (4) $2 \le k \le \frac{n}{2}$.

Since (4) is a hypothesis, from (1) and (2) it follows that $(\frac{n}{2}-k+2)(n-j) \ge n$, and due to (W10) this condition is equivalent to $\left(\frac{j}{n}\right)^{\frac{n}{2}-k+2} = 0$, therefore $n \cdot \left(\frac{j}{n}\right)^{\frac{n}{2}-k+2} = 0$.

Reciprocally, suppose now $n \cdot \left(\frac{j}{n}\right)^{\frac{n}{2}-k+2} = 0$; from this and (W10) it follows $(\frac{n}{2}-k+2)(n-j) \ge n$, which is equivalent to

(5)
$$j + k \le \frac{kn - 2n - n^2 + 2k^2 - 4k}{2k - 4 - n}$$

(5) $j+k \leq \frac{kn-2n-n^2+2k^2-4k}{2k-4-n}$.

On the other hand, $\frac{kn-2n-n^2+2k^2-4k}{2k-4-n} \leq n$ if and only if $2 \leq k \leq \frac{n}{2}$, which is true by hypothesis. Therefore, from (5) it follows $j + k \le n$.

(ii) If $k > \frac{n}{2}$ then $n + 1 - k \le \frac{n}{2}$; therefore from (L4), (i) and (W10) we have that $\sigma_k^{n+1}(x) = \sim \sigma_{n+1-k}^{n+1}(\sim x) = ((k+1-\frac{n}{2})\cdot x)^n$.

(b) For n = 3, n = 5 and n = 7 it is easy to do the verification.

As consequence of this result, we have that for n even or n odd and $n \le 7$, Theorem 2 is true if hypotheses (U14) and (U15) are replaced by (U17) and (U18).

The author would like to thank Dr. A.V. Figallo for his useful suggestions and valuable guide.

References

- [1] M. Abad, (1988), Estructuras Cíclica y Monádica de un álgebra de Lukasiewicz n-valente, Notas de Lógica Matemática, 36, Univ. Nac. del Sur.
- [2] R. Balbes and P. Dwinger, (1974), Distributive lattices, University of Missouri Press, Columbia, Mo..
- [3] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu, (1991), *Lukasiewicz-Moisil Algebras*, North-Holland.
- [4] R. Cignoli, (1970), *Moisil algebras*, Notas de Lógica Matemática, 27, Universidad Nacional del Sur, Bahía Blanca, Argentina.
- [5] R. Cignoli, (1980), Some algebraic aspects of many valued logics. Proceedings of the third Brasilian Conference on Mathematical Logic. A.I.Arruda, N.C.A. da Costa and A.M.Sette (editors). Sociedade Brasileira de Lógica. São Paolo, 49–68.
- [6] A. V. Figallo, (1990), Algebras Implicativas de Lukasiewicz (n + 1)-valuadas con diversas operaciones adicionales, Tesis Doctoral, Univ. Nac. del Sur.
- [7] A. V. Figallo, (1997), Q-operators on implicative Łukasiewicz algebras, Actas del Cuarto Congreso Dr. Antonio Monteiro, 141–154, Dpto. de Matemática - Instituto de Matemática, Univ. Nac. del Sur.

- [8] J. M. Font, A. J. Rodriguez and A. Torrens, (1984), Wajsberg algebras, Stochastica, 8, Nro. 1, 5–31.
- [9] G. Georgescu, A. Iorgulescu and I. Leustean, (1998), Monadic and Closure MV-Algebras, Multi. Val. Logic, Vol. 3, 235–257.
- [10] M. B. Lattanzi, (1996), WU_{n+1} -álgebras. Comunicación enviada a la Reunión Anual de la UMA.
- [11] M. B. Lattanzi, (1998), WU_{n+1} -álgebras libres. Comunicación presentada en la Reunión Anual de la UMA.
- [12] L. Monteiro, (1974), Algebras de Lukasiewicz trivalentes monádicas, Notas de Lógica Matemática, 32, Univ. Nac. del Sur, Bahía Blanca.
- [13] A. J. Rodríguez, (1980), Un estudio algebraico de los Cálculos Proposicionales de Lukasiewicz, Tesis Doctoral, Univ. de Barcelona.
- [14] A. J. Rodríguez and A. Torrens, (1994), Wajsberg Algebras and Post Algebras, Studia Logica, 53, 1–19.
- [15] Schwartz, D., (1977), Theorie der polyadischen MV-algebren endlicher Ordnung, Math. Nachr., 78, 131–138.
- [16] Schwartz, D., (1980), *Polyadic MV-algebras*, Zeitschr. f. Math. Logik und Grundlagen d. Math., 26, 561–564.

Marina Beatriz Lattanzi,

Facultad de Ciencias Exactas y Naturales,

Universidad Nacional de La Pampa,

Av. Uruguay 151 - 6300 Santa Rosa - Argentina.

 $e ext{-}mail: mblatt@exactas.unlpam.edu.ar$