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Abstract

The UW,,,, —algebras have been defined in [10] as algebras (A4,—; ~,V, 1), where
(A,>,~, 1} is a (n+1)—bounded Wajsberg algebra (see [13]) and V is a U —operator
on A, i.e., a unary operation defined on A which satisfies the identities: Vz—z =1,
Y(z—y)— (VzoVy) =1, V(Vz - Vy) = Vo - Vy.

Moisil’s modal operators o1, 02, ..., on that can be defined on a Wajsberg
algebra have been studied in [14].

In this note conditions are given on the V, — and ~ operations, so that in a
UW,+1—algebra Vo; = 05V, j = 1,2... ,nis verified.

It is also shown that if n > 1 is even or n is odd and < 7, then the Moisil’s modal
operators can be defined on any (n + 1)—valued Wajsberg algebra on the basis of

the unary operations of power and product by a natural number.

The results on Wajsberg algebras and Lukasiewicz algebras can be found in [13, 8] and
in [4, 5, 2], respectively. The definitions and properties needed to understand the rest of
the text will be described throughout this note.

Let A; and A, be two algebras with the same universe A; algebra A, is said to be a

reduct of A, if every fundamental operation of A; is a term in the language of As.

Let us remember that (see [13]) an algebra A = (A,—,~,1) of type (2,1,0) is a
Wajsberg algebra (or W —algebra) if the following identities are satisfied:

(W1) 1=z =gz,
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(W2) (z—=y) = ((y—2)—(z—2) =1,
(W3) (z—=y)—y = (y—7)—>7,
(W4) (vy—~ )= (z—y)=1.
We will denote with W the variety of W —algebras.

We will indicate with C,,,; the W —algebra with universe {0,2,2, .. 2=1 1} and the

IR

operations defined by:

z—=y=min{},1-z+y}and ~z:=1-=z.

On A € W the following binary operations can be defined:
(D1) zVy = (z—y) >y,
(D2) z Ay =~ (~aV ~y),
(D3) zxy =~ (z~y),

D) z+y=~y—zx.

For any A € W the following properties are verified (see [8, 13]):
(W5) z—>z =1,
(W6) (A,V,A,~,0,1)is a Kleene algebra where 0 =~ 1and z < yifand onlyifz—y = 1,
(W7) 250 =~ 1z,
(W8) z<y,z<timpliesz+2<y-+t,
(W9) 2 <y, 2<timpliesz *xz <y *t.

For each A € W, z € A and n integer, n > 0, the power z" and the product nz can
be defined as follows:

1 ifn=0

" lxg ifn>1

(D5) z" = {
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0 ifn=20
(n—-1)-z+z fn>1

(D6) n-zz{

Then in W' the following property is verified
(W10) n- (~z) =~ (™).

The classes of (n + 1)—bounded and (n + 1)—valued Wajsberg algebras are the sub-
varieties of W generated by chains of length less or equal to n + 1 and by the chain of
length n + 1, respectively.

Definition 1 [10] Let (A,—,~, 1) be a W—algebra. A U—operator on A is an application
V: A— A which satisfies the following identities:

(Ul) Vz—oz =1,
(U2) V(z—y)—> (Vz—oVy) =1,
(U3) V(Vz—Vy) = Vr—Vy.

An algebra (A,—,~,V, 1) is a UW —algebra if the reduct (A,—, ~, 1) is a Wajsberg algebra
and V is a U—operator on A.

An algebra (A,—,~,V,1) is a (n + 1)—bounded UW —algebra (or U Wrt1—algebra) if the
reduct (A,—,~,1) is a (n + 1)—bounded Wajsberg algebra and V is a U—operator on A.

Lemma Let A be a UW —algebra. For all z,y € A and every positive integer m, the
Jollowing properties are verified:

(U4) Y0 =0,

(U5) V1 =1,

(U6) z <y implies VT < Vy,
(U7) ¥V ~Vz =~ Vi,

(U8) V(Vz + Vy) = Yz + ¥y,
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(U9) Vz +Vy < V(z+y),
(U10) m -Vz <V(m - z),
(U11) V(Vz % Vy) = Vz * Vy,
(U12) Vz + ¥y < ¥(z * ),
(U13) (Vz)™ < V(™).

Proof

(U4) Is an immediate result of (W6) and (U1).

(U5) V1 =V(Vz—Vz) =Vz—Vz =1 [W5,U3]
(U6) 1 =V1=VY(z—y) < Vz Yy [U5,W6,U2]
(UT) V¥ ~ Vz = Y(Vz—0) = V(Y2 —V0) = V20 =~ Va. [W7,U4,U3]

(U8) Results of (D4), (U7) and (U3).

(U9) Results of (W6), (U1), (W8), (U6) and (US).
(U10) Results of (U9) and (D6) applying induction on m.
(U11) Results of (D3), (U7) and (U3).

(U12) Results of (W6), (U1), (W9), (U6) and (U11).

(U13) Results of (U12) and (D5) applying induction on m. |

An algebra (A, V, A, ~, 07, ... ,0m"1,0,1), n>1,is a (n+1)— valued Lukasiewicz
algebra (or L,.;—algebra) if the reduct (4,V,A, ~,0,1) is a De Morgan algebra and

n+1l _nitl n+1

ot o3 ., o™ are unary operators, called Moisil’s modal operators, which satisfy

the identities (see [5]):
(L) ot (aVvy) =07z Voitly, 1< j<n,

(L2) oz Volfiz =0}z, 1<j<n—-1,
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(L3) of*'z v otz =1, 1<j<m,

(L4) o7~z =~ ot iz, 1< <,

(L5) of otz = oz, 1<4, j<n,

(L6) zVontly = gntig,

(L7) (zA~ oz Aoy Vy=y, 1<j<n-1.

3

Example 1 Let n = 2. It is easy to see that (C3,—, ~,V,1) is a UW,1—algebra, where
Y0 = ‘v’% = 0 and V1 = 1. If we consider the structure of three-valued Lukasiewicz
algebra of C3, we have that o3 (V) = 0 whereas Vo3 (1) = 1. Therefore, if we have
dr =~ V ~ z, it results that the class of UW,,;—algebras is not equivalent to the class
of monadic three-valued Lukasiewicz algebras introduced by L. Monteiro in [12].

In [14, Theorem 15, pg.16] it is stated that every (n + 1)—bounded Wajsberg algebra
has a L,;;—algebra reduct. So we have analysed, in the first place, how to define such
operators on a (n + 1)—bounded Wajsberg algebra with the purpose of determining the
conditions on V, — y ~ operations so that a U—operator commutes with Moisil’s modal

operators.

A family of unary terms p(n, m)(z), n,m > 0 of language of the W —algebras is defined
by induction in [14] as follows:

(P1) for any n >0, p(n,0)(z) =1,
(P2) for any m > 1, p(0,m)(z) = 0,
(P3) if p(r,m)(z) is defined for r < n and m > 0, then
p(n +1,m)(z) =~ ((~ p(n, m)(z) = z) =~ p(n,m — 1)(z)).
The following properties hold (see [14]):

(P4) p(n,1)(z) =n -z, for every n > 1,
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(P5) p(n,n +m)(z) =0, for every n > 0 and m > 1,

(P6) p(n,n)(z) =z, for every n > 0.

Besides, in {14, pg. 13] it is stated that if (4,—, ~, 1) is a (n + 1)—bounded Wajsberg
algebra, then (A, V, A, ~, a7 ... 071,0,1), is a (n + 1)—valued Lukasiewicz algebra,

where for every 1 < i < n, the unary operators o""! are the interpretation of terms

p(n,n+1—14)on A, ie., (674 = (p(n,n +1 — i)~

As follows in Example 2 we shall show that the previous affirmation is false.

Example 2 Let A = Cyy1 x Cs41; it is clear that A is a (3 + 1)—bounded but not a
(3 + 1)—valued Wajsberg algebra. For n = 3, the following polynomials are obtained:
ot (z) = p(3,3)(z) =1,
oy () = p(3,2)(z) =(z+2°)x(2-2),
o3 (z) = p(3,1)(z)=3"=.

For z = (},0) € A we have that o537 ((2,0)) = (3,0), then 37" ((3,0))V ~ 051((5,0)) =
(1,1) and the property (L3) is not verified.

Remark We cannot always define the operators 07, 1 < i < n on a (n + 1)—bounded
W —algebra, so that it can be endowed with a structure of (n + 1)—valued Lukasiewicz
algebra. Indeed, every (3 + 1)—valued Lukasiewicz finite algebra is direct product of
chains with 2 and/or 4 elements (see [3, pg. 120]) then its cardinal must be a power of
2. Therefore the (3 + 1)—bounded Wajsberg algebra Cs.1 x C341 is not a (3 + 1)—valued
Lukasiewicz algebra.

In [14, Theorem 15, pg. 16] it is stated that if A is a W —algebra then the following
conditions are equivalent (part (ii) has been omitted):

(i) A admits a (n + 1)—wvalued Lukasiewicz algebra reduct, for some n > 1,

(i) A isn+1 bounded for somen < w.
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where n is the same in (i) and (iii).
But the remark above contradicts the previous affirmation.
On the other hand, the following result is verified:

Theorem 1 If A is a (n+1)— bounded W —algebra, then A admits a (m+1)—valued Luka-
siewicz algebra reduct, where m is the least common multiple of the integersr, 1 <r < n.

That is to say, if (A,—,~,1) is a (n + 1)— bounded Wagsberg algebra, then (A,V, A, ~,

ot o o™t 0,1) is a (m + 1)—valued Lukasiewicz algebra where 0 =~ 1, m is the

least common multiple of the integers r, 1 < r < n and for every a,b € A:
zVy=(z—=y) -y,
TNy =~ (~aV~y),
o (z) = p(m,m+1—1i)(z), 1 <i<m.

Proof It is simple to check that the interpretation of the unary terms p(m, m+1—i)(z),

1<i<m,on Cyy for any 1 < r < n satisfies the equations (L1) to (L7). |

JFrom this analysis we can conclude that in order to study the relation between modal
operators and the U—operator, it is necessary to restrict ourselves to (n + 1)—valued

Wajsberg algebras.

Theorem 2 Let (A,—,~,1) be a (n+ 1)—valued Wagsberg algebra andV : A— A a U~
operator. If for every x,y € A the two following properties are satisfied:

(U14) V(z +y) <Vz +Vy,

(U15) V(z *xy) < Vz xVy,
then, it is verified that:
(U16) Voi*'(z) = o7t (Vz), for all i, 1 < i <n, whereas for everyz € A

(1) o*Yz) = p(n,n+ 1 —13)(z).
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Proof From (1), it is enough to prove
(2) p(n,n+1=3)(Vz) =Vp(n,n +1—i)(z),forallz € Aand 1 <i<n.

We will prove (2) by induction on n. For n = 1, it is a direct consequence of (P4).

Suppose now that (2) is true for every r < n, i.e., it is verified that:
(3) p(r,r+1—19)(Vz) =Vp(r,r+1 —i)(z), foreveryz € A, r <nand 1 <i<r,
and we shall prove that it holds for n.
From (P3), (D3) and (D4) it follows
(4) p(n,n+1—1)(Vz) = (Vz +p(n — 1,n + 1 —1)(Vz)) *p(n — 1,n — i)(Vx).
For r =n — 1, (5) results from (3):

(5) p(n—1,n—%)(Vz) = p(r,r+1—13)(Vz)
= Vp(r,r+1—14)(z)
= Vp(n—1,n—13)(z).

On the other hand, considering r =n — 1 and j = ¢ — 1 it is possible to write
(6) p(n —1,n +1—13)(Vz) = p(r,r + 2 —2)(Vz) = Vp(r,r + 1 — 5)(Vz).
Ifi>1,1<j <1< r then, considering (3) the following identities are verified:
(7) Vp(r,r+1—5)(Vz) =Vp(r,r +1 —j)(z) =Vp(n — 1,n + 1 —i)(z).
For ¢ = 1, (8) results from (P5):
(8) p(n —1,n)(Vz) = 0 = Vp(n — 1,n)(z),
therefore, from (6), (7) and (8) we obtain

(9) p(n—1,n+1—14)(Vz) =Vp(n —1,n+1—i)(x).
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Equality (2) is a consequence of (4), (5), (9), (U9), (U14), (U12), (U15), (P3), (D3)
and (D4). Indeed:

p(n,n+1—id)(Vz) = (Vz+Vp(n—1,n+1—1%)(z))*Vp(n—1,n~1i)(z)
= Y(z+pn—1,n+1—1i)(z))*Vp(n —1,n —i)(z)
= Y((z+prn—1,n+1-19)(z))*p(n—1,n—1)(z))
= Vp(n,n+1-1)(z)). |

Theorem 2 takes us to the following definition:

Definition 2 Let V be a U—operator on a Wajsberg algebra A. We shall say thatV is a

universal quantifier if the two following properties are satisfied:
(i) V(~z—>y) = (~VzoVy) =1,
(ii) Vv (2o~ y) o (~ (Vo o~ Vy)) = 1.

It is easy to verify that if V is a universal quantifier on a Wajsberg algebra A, then for

every z,y € A and every positive integer m, the following properties are satisfied:
(U17) Y(m - z) < m - Vz,
(U18) V(2™) < (V)™
The monadic MV, —algebras are defined as pairs (A, 3), where A isa MV, —algebra

(i.e., A is polynomially equivalent to a (n+ 1)—valued Wajsberg algebra) and 3: A— A
is an application that verifies the following axioms (see {15, 16, 9]):

(M0) 30 =0,

M1) z < dz,

(M2) 3(z *Jy) = Jz * Ty,
(M3) Iz + Jy) = Iz + Ty,

(M4) F(z *z) = Iz * I,
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(M5) 3(z + ) = Iz + 3z

It is proved in [9] that the monadic MV,,,;—algebras are polynomially equivalent to
the (n 4+ 1)—valued Lukasiewicz algebras for n = 2 and n = 3. Particulary, it is shown
that every monadic M Vs, —algebra has a structure of monadic L, —algebra (see [1])
with respect to

ait(z) =
() = (2-2P =3,
ost(z) = 3-z

When Mosil’s modal operators on a (n + 1)—valued Wajsberg algebra are defined as
in Theorem 2, i.e., 07 (z) = p(n,n+ 1 — k)(z), for each 1 <k < n, it results

) = 2,
o3 (z) = (z+2)*(2 1)
ot (z) = 3-z.

If Ais a (3+ 1)—valued Wajsberg algebra, then (z + %) * (2 - z) = 3 - 2°, for every
z € A

It is well known that the chain C,,, with the lattice operations defined on the basis
of their natural order, the negation defined by ~ z := 1 — z and the operators

3= {

is a L,1—algebra.

On the other hand, if we consider the W —algebra C, 1, from (P4) and (P6) we have
that 077 (z) = p(n,n)(z) = " and o2+ (z) = p(n,1)(z) =n -z, for every z € Cpy1 and
n>1.

0 ifk+73<n

,forevery k,7, 1 <k<mnand 0 <j <n,
1 otherwise

In the Theorem 3, which is developed below, we shall prove that every Moisil’s modal
operator on the chain of length n + 1, and therefore on any (n + 1)—valued Wajsberg

algebra, can be defined in terms of the power and product unary operations by a natural
number (see (D5) and (D6)).
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Theorem 3 Let n be an integer, n > 3, Cppy € W and, for every k,j, 1 < k <n and
0 ifk+j<

0<j<n, o™ (L) = ifkrjsn . Then, for any z € Cryy it is verified that:
1 otherunse

(a) Ifn is even:

implies opt(z) = n - 37

(i) k <
(i) k >

NIk

N3

implies o' (z) = (k+1—2) - 2)™.

(b) Ifn is odd andn < 7:

(i) k < £ implies op+(z) = n - 2T 42,

(i) k> 2 implies o Hz) = ((k +1 - %51) - 2)*.
Proof

(a) Let n be even.

(i) Let 2<k < 2. If op** (L) =0, then k + j < n, hence resulting:
1) G-k+2(n—-37)>(E—-k+2)k.
On the other hand, conditions (2), (3) and (4) below are equivalent:
(2) (3 —k+2)k>n,
(3) —k*+(2+2)k—-n>0,
(4) 2<k<%

Since (4) is a hypothesis, from (1) and (2) it follows that (2 —k+2)(n—j) > n,

2
and due to (W10) this condition is equivalent to ()2 = 0, therefore

—k+2
O

Reciprocally, suppose now n - (%)%—Ic+2 = 0; from this and (W10) it follows
(3 —k +2)(n — j) > n, which is equivalent to
(5) j+k< kn —2n —n® + 2k® — 4k

2k—4—n
On the other hand, k"‘z’;;"Z’Li'“Q_‘*’“ <nif and only if 2 < k < %, which is true

by hypothesis. Therefore, from (5) it follows j + k < n.
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(i) If k£ > 2 then n+ 1 — k < 2; therefore from (L4), (i) and (W10) we have that

op (@) =~ ok (~2) =((k+1-3)-z)"
(b) Forn=3,n =25 and n =7 it is easy to do the verification. u

As consequence of this result, we have that for n even or n odd and n < 7, Theorem
2 is true if hypotheses (U14) and (U15) are replaced by (U17) and (U18).

The author would like to thank Dr. A.V. Figallo for his useful suggestions and valuable
guide.
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