A Survey On A Certain Unsymimetric
Fractional Operator.

Carlos C. Pefia.*

Abstract

We'll construct a testing function space in order (o analize distri-
butionally some fractional operator in concomitancy with the unsym-
metric Lowndes operator of Kober type. This kind of research was
suggested by Adan MceBride in [MceB&R] .

§1 Introduction.
Throughout this article we assume that s > 0, @ > 0. Morcover, if € and
o arc reals for o positive we’ll write
a—-i

A\ e g r—1t\ 2
I7 (& )Y(z) = <E) gmaEe ; (&te (J ) Jo_1 (/{,\/ ot — tz) P(t)dt

2 t
(1)

and
- 00 e 2
K. (& a)¢z) = <g> :1:5/ tmes <t - 'L) Y e (m/a;t - a:z) @(t)dt,
€ .,

(2)
wherein we assume that 1 and ¢ are functions so that (1) and (2) have
a definite meaning and by .J,_; we denote the Bessel [unction of the tirst
kind. The resulting fractional operator in (2) is the well known unsymmetric
Lowndes onc of Kober type.

The operator (2) was introduced by J. S. Lowndes [L], providing a power-
ful tool with broad applications in the resolution of some partial differential
equations, for instance the generalized biaxially symmectric potential cqua-
tion, the generalized axially symmetric potential cquation in n+ 1 variables,
cte.. We remember that the Kober f{a(xtiorlzml opcrator is given by

Ko =28 o W o ;1;‘-“"6, (3)
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where W is the classical Weyl integral transform [M], whose gencral form is

SRyt ifw >0,
WY f(z) =
(=Dg)"W¥inf(z) Hrv<0, neNaudO<v+n<l.
(4)

Let us consider the equation

KE9g —y, (5)
the Lowndes propertics

I(K. (6, (X) © Kv{ R I(ra (€> - /3) ’ (6)
K, (& a)oa” =27 o I, (£ —0,q), (7

and the composition formula
K& o [&T0F = [(&oth, (8)

If we write

¢ = K& Py, (9)

from (5), (6), (7) and (9) we find that
K (&) = (250 Ky (0,0 + ) o WP 027410 ), (10)

The right hand side of equation (10) is defined when o+ /3 > 0. Hence by
taking 3 = n, the positive integer for which 0 < a +n < 1, we may extend
(2) for @ < 0 by means of

K (& a)yp(a) = 28K, (0, +n) (=Dy)" (:1:_5""”1/1(w)) (11)
where as usual by D we denote the current derivation operator.

§2 On Differentiable Properties of I, (& «).

In this scction we introduce a famiily of homogencous dilferential polyno-
mials which arise by sitple differentiation. As before, our treatment is purcly
formal and it will be assumecd that all required derivatives and integrals
are defined as well as our differentiation under the integral sign arguments
are possible. We'll shortly impose conditions that will give a consummate
groundwork to the following lines.
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Theorem 1 Let n be a non negative integer. Then

D"IC (&) =) K (€ — jyadn—j) Dy (2, D) (12)
=0
where
k2 \"
])'n,() (‘.1;, D) = <—__) 3 (13)
Py (z,D) = D"
and
K2z
Pri1j(z, D) = —TRL,]-(:II, D)+DP, ;- (2,D) if 1<y <nt (14)
Proof.

The case n = 0 is immediate. Writing (2) in the form

K (€, @) d(z) = (gx)l_a /l T (- 1) s (koA 1) (o)

(19)
and making 0 = szt — 1, on using equation (7) we've

; RN (S s S 00
DK, (&,0) ¢(z) = 2 1./1 (ﬁ%—a}[(’( D0 (0)] o (L)t

bt [T e e (0
1
K2z : ey
= =K (- Lo+ 1)) + K€ - 1) (@)

2.

= K., a+1) <— h'2j'<p’(;v)> + K (€~ 1,0) ¢!V (x)

and the case n = 1 follows.
By an induction hypothesis we assume the validity of the result for values
< n. On using (13), (14) and (16) we obtain

Dn-{-l]{ﬂ ({,a) = Z D K, (’S —ha+n-— .]) ¢n,j(x)
j=0

'For the sake of brevity, We'll somectimes write P, i(a, DYp = ¢, j, or 0 < j < nand
suitable functions ¢.
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Th 2,.

= ). ‘%Ig(&—j—1,a+'n/—i+1)</’w'(“*')+ (17)

j=0
1K (€= G = Lot = ) o) ()]
2,. N

= S LK€ Latn = 1) duy(o) +

=0

+ K (€ —n—1,a) p" ()

n 2.,
+Y K (€ —jadtn—j+1) [1’”_,_1,1- (x, D) + ’—éipj (, D)] b(z).
j=1

Now we write

/"32 €T

nll
Poy1o(z,D) = (_T> and Poiimii(x, D) = D! (18)

and by (7) and (17) we have

/\'2"1'

D", (6,0) = Ko(&a+n-t1) (W—Z—H_P,L,o (x, D) (/)(;1:)) +

I (&= — L, ) Poyig (2, D)p() -+

]

+> Ko (§—jyadn—j+1) P (2, D) ¢(z)

j=1
’n;‘—l
= L K€ —jyat+n—j+1) Loy (117, D) ¢()
j=0

and the result follows.O

Corollary 1 If n and j arc non negative integers such that O < 5 < n then
P, ; is an homogeneous differential polynomial of degree j and n— j in the
variables D and x respectively.

Corollary 2 If n and j are non negative integers such that 0 < j < n, the

P, ; ’s are the formal sum of all possible mononials of degree j and n — j in
the variables D and x respectively.
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Corollary 3 Letn, j and k be any possible non negative integers such that
0<j<nand0<k<n-—j Then

n] lelpn k,j—1-

=1

Corollary 4 If n and j are non negative integers such that 0 < j < n then
there are real numbers ¢iy s such that

J
=27 RO l
P =u § ¢y o D

=0
Proof.

In the casc n = 0 we may take c(, o = 1. Let us assume the result for
values < n. In particular, by (18) we have

2

where 4 is the classical Kronecker’s delta symbol. In the case 1 < j < 7, Ol
using Corollary 3 and owr inductive hypothesis we write

2\ el ]
K e .
cg’»(l)l = (__-—_> and (Zi; §, =0 0 <<+ 1,

n-il—j

Poiij= Y Puiiojy Py (19)

=1
Now fixing 0 <! < n+ 1 — j it follows that
g1

r ‘ B o ] — 421 h h
Poirja Pij1 = Py |2 2_ G a" D

h=0

A 1 lnin{k,h,lﬂ-j} 11\7 h "i‘ 2] Y ' ‘
— ml QJZ LA \ nll i Z ([)( ( J)' wh-lk—z Dh-rk—:

h=0 k=0 =0 h+-20— 5 — i)

and by (19) the inductive argument follows.(3
Theorem 2 Let n and j be non negative integers such that j < n+1. Then

Pop1; Ko (€ a)= Z Uy B (E+nt1—j—hat+jij—h)D i, (20)

h=0

where a?yo = aﬁl =140<h<l, 1< and

m—l—a,]l of h=0,1<j<mn,
::+1,1 = “h,J1 1= “ﬁ,j + aﬁ,j—l f 1<h<j-1, (21)
CLZM Zf ll == j.



Proof.
By (7) and (13) we've

Pl’() ]\r,‘; (f, (Y) == [X’N (f -i- l, (1) 171’()

and hence af , = 1. By (13) and (16) we obtain a} |, = aj; = 1.

On using (7), (14) and (16) it follows that
Py Ko (€,0) =2 I, (£ 1, a4+ 1) Py + I (&, @) Py,
ie. a), =2 and ajy, = 1. Morcover
Py K (€, 0) = K (€42, ) Py,

ie. ajgy = 1 and all the required conditions are fulfilled. Now by (7), (14)
and assuming the validity of the result for integer values < n we may write

J
Poiy; K (6a) = Za;,j Ke(E+n—j+1—Liat+j—10)Pg Pyt
l;:()

j—1
FP> Al K (E+n—j+1—Latj—1—=1)Py
-0

= al; Kn(+n—2j+1,0) Do Doy +
3 (ah; +ah ;) Ke(Ebn=jL—=lotj—1) Py P+

J
+ Z (1/5:]»]_1 Ke(+n—j—l+Lat+j—=0)DPy Py
1=1
= (l];’j I{n (6 +n— 2] + l,(X) Pl,() Rz,j +
+(ah; +ad, ) Ke(€+n—j+1a+5) P Pag+

—!—afljjf_l K. (E4+n—25+10) P Pyjo

i—1
+ Za'i:jl-—l Ky (f =g =l4laty— 1) (171,0 Dy 1)1,1 f’n,z—l) .
=1
Now, in accordance with (13) and (14) besides the [act af, ; = aZL_Jl_ | wWe

deduce (20) and the theorem is proved.O
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§3 On a certain Fréchet Space.

Definition 1 Lety € IR, p > 0, 0 a non negative integer and ¢ € C™ (R*) .2
We'll write

DT () = sup {:1:"'-7"7 | P j(z, DYp(2)] : x > O},

0<j<n

and
Lyp= {¢ € C” (R"') : Supp (¢) € (0,p] and D) (¢h) < 0o, n =0, 1, } .

Remark 1 £,, has a nalural lincar structure. Morcover, we’ll consider
Lyp as the multinormed space endowed with the topology generated by the

separating family of seminorms { P} ..

Theorem 3 £, is a Fréchet space.

Proof.
Let us consider a Cauchy sequence {¢x},, . For all > 0 we have

w77 dn (@) — b ()] < OF (i — bi) (22)

and hence {277 ¢x(2)},5, becomes a uniform convergent sequence. By coni-
pleteness there is a function ¢ such that 277 ¢ (22) = ¢(x) uniformly in R'.
In particular, ¢ becomes a continuous function and Supp(p) € (0,p]. Let
d(x) = 27 @(z) for z > 0, and let ¢ be any given positive number. There
exist ke € N such that

Of (drin — x) < ¢ it B>k b 20, (23)
On using (22) and (23) we obtain
Iul:—7 i) — go(:lr)l << if k> ke x>0,

i.c.
2 @) = ) ¢ k> ke, 2 >0,
i.c.

Oy (b~ ) <C i k>k (24)

2As usual we'll denote through ¢ {(12T), with 0 < j < oo, for the class of {functions of
a real positive variable which has continous derivatives up to the order n, with values in
a same (no specified) Banach space.
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and since ¢ was arbitrary ®J (¢ — ¢) — 0. Morcover

w7 p(x)] < aTT |gn(w) — ()] + 27T ()]

< DY (i — &) 4+ D4 (Pr)

and hence it is clear that ®f (¢) < co. On the other hand, since {®7 (dx) }ys,
is a Cauchy scquence there ar c continuous func tlons P, v, both supported in
(0,p], such that 2277 ¢y (2) = ¥(z) and 2*77 c/’),v ( ) = o(x) uniforly in
R*t. Since

(@) 2% o) < |ple) - o*7 gu()| + |22 dule) - o* ()]

< l’(/)(;‘l,')—.',' op(x l + p* ’l T i) - ~L>.

we have (z) = 2277 ¢(x) in R’ . Next, choose 7 and 7 such that 0 <7 < 7.

Then

T

(2 —7) /T a7 pp()de S (1) — (1) — / v(x)de

[ <70

and so ¢ € C'(R"). Thus, ¢ € C' (1R') and there result

2=7) 777 §(r) = (1) = 0(7),

ic. v(r) = 1% d)(l)('r) in *. Now, given an € > 0 there exist ke € N such
that
O (hrin — dw) <€ if k> ke, h > 0.

Forallz >0, k > k., h > 0 we deduce that

2
a7 | Pro(e, D) (drin — ¢r) ()] = %":2“7 |Prin () — dr(2)| < £(25)
2®77 | Pia(e, D) (dryn — o) ()] = 277 \d)g*)" (/(1)( )I ¢

and letting h — oo we have

27| P (e, D) (P — @) ()] < e

> | Py, D) (dr — ¢) (2)] < e,
i.c.
Ol (px—¢) < ¢ if  k=k
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Purthermore, on using (25) we obtain

/2
“,';f{ PR ST

Le. ©(¢) < oco. Now, let us assume that {®] | (¢)}) k> 15 a fundamental

(el

sequence, n > 1, and ™17 ‘7)1(;7)(35) 2™ Y g () in R0 < j < .
On using Corollary 4 with 0 < j < n we have

(/)(l)(;lf)'} <€l (I'r((‘/)n;s)

eV Py (2, D) (90— 0) (a )—f"r”"“-fz ot e (@ —9M)(z) > 0.

(26)

Now, let st be a continuous function in 2" such that

=Y 2n 2 (nkl) e\ o e

@ b (x) = plx). (27)
Once again, we choose 7y and 7 such that 0 < 7y < 7 and hence

/ 2 /(nll)( s _>/ u(x)dz,

i.c. o
/ p(a)da =
v T
= 22 ) (7) =75 THE 2 plm) (10) = (—y--2n-4-2) / v e (/;,(:")(w)da:.
JTh
We can immediately conclude that ¢ € C*(R") and
p(r) = g2 (,b(”"’l)(T) if 7>0. (28)

By (26) - (28) we have &7, (¢ — ¢) — 0. With ky € N such that
O (ke — @) < 1 we have that

a7 P (2, D)) < B (ke — @) + P4 (k)
< 14 (I);I—IJ((/)M))
forall 2 > 0,0 < j <n+1. Hence

nl 1((/)) < 1+ (I)nl 1 (/)ku) < o0

and our assertion {ollows, [
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- ‘] y i 1 T 3 ’ Vel oL &d A 1 r
Remark 2 Ifq > p, v > 6 then £, C £s,. Morcover, for ¢ € £y, and any
non negative integer n we have

() < "0 ()
and the topology of L., ts stronger than the induced topology on it by L.

Definition 2 Let 4 € R, {an},5, and {bn},, two arbitrary sequences of
positive numbers, strict monotonc decreasing the first, strict monotone n-
creasing the second, a, — 0 and b, — oo. We'll consider

A 0 1
Ly :“L_’_'l Lty tan, buo

endowed with the structure of a countable - union space in the sense of
Gelfand and Shilov [G&S), i.c. u sequence {¢y},5, of elements of Ly will
converge to an clement ¢ € £, if and only if there exist ng € N such that
{(/)k}kZI C Ltang, bugs D E Lty bug and gy = i Ly ia,,, bog-

Remark 3 By Remark 2 we've £, C £, whether n < p. Morcover, 8
easy to see that the topological structure does not depend on the choices of
the sequences {(L"}"Z L and {b,,,}”Z L

Remark 4 D (') C £, and lhe topology of D (R") is stronger than the
corresponding topology induced by L,,.

Remark 5 Let n, A € R. Then 2 is a continuous lincar operator belween
£, and L£,-x. Morcover, if a > 0, b > 0, n is a non neqative integer and
¢ € L4y ap, using Corollary 4 and ils nolalion we oblain

. 7 h L bzn—j—/u k .

—n-t-Xta [, kO zﬁ "‘7/ a

(I)'IL ! (”L (/)) < ()Ii]‘;"();n l' (J. _{_ /\) h~ ((/))
] 17

(’j,h
~0 k=0
Remark 6 Given p > 0,\ € R, the operutor T,d(x) = ¢(px) is a continuous
linear map of £, inlo itsclf. For, lel a > 0, b > 0, n a non negative integer
and ¢ € L_yiap. In particular, Supp (T,,(j)) (0,0/p]. On the other hand,
we have

2n—j 4

O-1H(T ) < max | - Z ¢

0<5<n Iz 0

.
o

/)_-h.—l—a“'l (I);rl-l'a ((/)) .

Remark 7 Moreover, wilth the same notalion there becomes £y D £y,

since

.

(I)—1}——-2 -+ u D(/)

Zn—] h (I)]_LT}’ll 7 (d)) )

]h
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Remark 8 £, is a testing function space. In fact, we already know that it is
a complete countable union space of smooth functions over R* and we must
only show that its topology is stronger than the induced topology by € ().
To this end let a and b be any positive numbers, {(/)L}Dl C L ey bea
sequence such that ¢ — 0 and I a fived compact subsct of R*. We may find
¢, d € R such that ¢ < x < d for every z € K. For a given non negative
integer n and © € K we have

Lot n |p“ ”( )(bk(l)l < (I>7—LTH—(.L ((/)k) )

i.e.
‘(/)(”)(. )‘ < nmx{ T ie—2n c<xz< d} O (i)

. [¢] . -
i.c. d),ETL)(m) — 0 for cvery non negative n. over any compact subset of IR*.

Remark 9 The space ® (IR') is not dense in £ 2y dn fact, lel b be any positive
number, v > —n and & € E(R') such thal &(x) = 1 if 0 < z < b/2 and
£(x) = 0 if o > b. Now, for x positive we define d(z) = 27 e® &€(x). On using
again Corollary 4 and its notation, for x > 0 and any non negative mtegers
n, j such that j < n we obtain

i ) L\ ,L ]L ("':/ I h In—ilh .
LY |Pn,j(11»', D)(ﬁ(.L)l < L Z ‘ 7 l___ <h> <k> ;L'z —J-1-h ¢ g(k)(l:)l

) .
M

< C(n,b) ¢ sup {l‘f(")( )l O<a< ()}

l) h)
O<k<y [=0 h=0 k= 0(1 ‘l“’)’ —n \NtJ\k)’
i.c.

, b AR I\ [h
DY (¢) < C(n,b) Juax {lg(")(;l;)l — < g < }IZ ) l+’y) - (})(/\:)

0 h=0 k=L

Therefore ¢ € £,,. Morcover, for any lesting function o € D (RY) we
have

‘-]-’H ((/) - 90) Z Ja
i.e. our assertion follows.
§4 Fractional Integrals on £,,; .
Theorem 4 Let « > 1/2, & € R. Then K, (€,q) is a continuous lincar -
integral transformation of £, into itself for all ) € R such that n > —¢&.
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Proof.

Let 7 be under the stated conditions, ¢ € £,. With the notation of
Definition 2 we may find ng € N such that (/) € L1 ang, bu,- Morcover, there
exist g > ng such that the number o = 9)--§ —a,,, is positive and by Remark
2 wealso have ¢ € £, 14, 0, -

In particular, Supp (K, (&, @) ¢) C (0,b,,]. Now, for & > 0 and writing

0 = kz\/T — 1 we have
Kugeyswl < () [Tt e

In general, we'll consider the inequality [F, J&L]
']u-l m,(z)

ZU

a1 (0) o(tz)|dt  (29)

< Cum (30)

which is valid for z > 0, v > —1/2, any non negative integer 1 and wherein
the C,'s are positive constants. By (29) and (30) we obtain

a7 K (€, ) ¢(2)] < 297 Cyi o Bela, o) " ()

i.e.
Oy (I, (€, @) ¢) < 27 Cucro Bee,0) 7" ().
Now,let n > 0,0 < h < j <n-+1, 2> 0. From the estimate

| (§ bt L= j =Dy = h) Py, DY(x)] <

KL 1—ax—j4-h (f o 1)3_Ll_;L},
= (7) /1 TjaEini 12 ot jmn—1 (0) Puyyn(z, D)d(te)| dt
h—j —] — 9] (I)-—’I] | u,nl(/)
r } ! ‘} N ¢ 7!l »
S W Caul’j—hr‘ ' be ( 2 ’ 2 ez (r> Cl:j’l‘n'!'l'lﬂl_anl

and applying Theorem 2 we obtain

IR [Py K (€ 0) p(2)] <

a Ioal s kM j—h j—3h
<I>nr|lf "B _27%17—LT Cot,j—niy Be {a+ / 5 ,J 5 +2n+2+ a)
h=0 )

which yields
(I)_-n f-en ([( ( (J/) (p( )) S C(D;"!{l‘ Umn ((j))
with

i al wh= j—h j—3h

o n+1,7 ~ i ~
C“m§?ﬁ42; 9htl-a-] C“—Lf“'ch<”'_ 2 ' 9 4_%L+2_FU>’

and our assertion follows. O
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Remark 10 For a real number o we’ll consider the formal inner weight
product

((/), 'g/,))dem = /Uoo (’/)(:I,‘)W(L'(rd:l:,

with respect to which we may consider £, C 2”’ ifo—ny—p>—1, by means
of the relation ¢ — (¢, )

xdw *

Remark 11 Morcover, we’oc the following formal Parscoal relation

<¢> 3i (67 Ul) "/’):cﬂdm = <I{N (‘S? u) (/)) w>;l:"<lw ’

which allow us to consider fractional unsynunctric integrals of generalizod
functions over £, in the usual known way. In particular, with respect to
the ordinary Lebesgue measure (o = 0) and denoting as £,,’ for the space of
generalized functions over £ for ¢ € £, and ¢ € £oa>1 /2 and 1) > =€,
from the above relation we obtain 3)) (€,a) ¥ € £,

>
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