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Abstract

Four-valued modal algebras were introduced by A. Monteiro in 1978 as a generalization of
the three-valued Lukasiewicz algebras [8] and they were studied by I. Loureiro [5,6] (also
see [3,4]). In this paper we define monadic four-valued modal algebras and we give a set of
independent axioms for them. We study the congruences and homomorphisms, showing
that monadic four-valued modal algebras are semisimple and finally we characterize the
simple algebras.

Our results generalize those obtained by L. Monteiro [10] for monadic three — valued
Lukasiewicz algebras.

1  Preliminary definitions and properties
General references for concepts and results on distributive lattices and universal

algebra used in this paper are the books [1] and [2].

Four - valued modal algebras have been defined by A. Monteiro in 1978, in the

following way:

Definition 1.1 A four- valued modal algebra (A, A, Vv, ~,V 1) is an algebra of type
(2,2,1,1,0) which satisfies the following azioms:

Al) zA(zvy) ==, A2) zA(yvz)=(znz)Vv(yAz),
A3) ~~z =2, Ad) ~(zAy)=~2V ~y,
A5) ~zv V=1, AB) ~zAVZ=zA~cz.

From the definition, it follows that A is a distributive lattice [12] and a De Morgan
algebra ([1,8]). For more details on four -valued modal algebras we lead the readers
to [5,6] (see also [3,4]).

Definition 1.2 A monadic four- valued modal algebra (or MTM - algebra) (A, A, vV, ~, V,
3,1) s an algebra of type (2,2,1,1,1,0) such that (A, A, Vv, ~,V,1) is a four—valued
modal algebra and 3 is a unary operator on A (called ezistential quantifier) which satis-

1Some of the results of this paper were presented at the Annual Meeting of the Unién

Matematica Argentina (October, 1988) {13]. 69



fies the following equations:
El) zAdz=z,
E2) IzAady)=FzAdy,
E3) v3Izr=31vVg,
E4) Adr=3Azx, where Az=~V ~7,
E5) I~3Jz= ~3z.

If A satisfies the axiom V(zAy)= VzA Vy, then we get a monadic three - valued
Lukasiewicz algebra [10].

We proceed to consider some examples of MTM - algebras.

Examples 1.1
1
|~z | Vx|3dz
0 1 0 0 0 S,
1 0 1 1
Tl ~x | Vzdr 1
0] 1 0 0
c 1 1 c Ss
1 1 1 0
1
|l ~2| YV i|dz
0 1 0 0
al a 1 a a b
b b 1 b
1 0 1 1 54
0

We shall denote by MTH the variety of monadic four - valued modal algebras.

We have proved that Al,...,A6,E1,E2,E5 and I~ V ~2 =~V ~3Jz are mutually in-

dependent axioms for an MIM - algebra.

Lemma 1.1 If A € MTH then it holds:

E6) = <3r, E7) J=1,

E8) 30=0, E9) d3r =4z,
E10) z <y implies 3z <3y, Ell) ~zvViz=1,
E12) JzvV~z=1, E13) Fzvy)=3rvy,

E14) The set K(A)={z€ A:Jx =z} of the invariant elements of A is a monadic

four - valued modal subalgebra of A.
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In what follows, for any A € MTN, let B(A) be the set of boolean elements of A, and
I{A)={reA:Vz=s}={reA: Az=z}={re B(A): -z = ~z} ([6]), where -z denotes
the boolean complement of z, z € B(A).

In the following lemmas we collect some results that we shall use in the subsequents

parts of this paper.

Lemma 1.2 If A c MM and K(A)~ S, then A is a Boolean algebra, where —z = ~ z, for
all z € A.

Proof. Assume that there exists z € 4 such that A ~z # 0. By hypothesis, it follows
that 3 (zA ~z)=1. Therefore 1= A3 (zA ~2)=3(AzA A ~z)=30 = 0, contradiction.
Then zA ~z=0forall z€ A, and so also ~zvz=1forall ze 4. O

From [6] it is easy to check that
Lemma 1.3 If A € M then I(A) is a subalgebra of A.
Lemma 1.4 If A c MTM then (I(A),3) is @ monadic Boolean algebra.

Proof. For all z€I(A), 2= Vz, then ~z= ~ Vaz. Therefore ~z is the boolean

complement of z. O

Definition 1.3 Let A c MTM , then c€ A is a center of A if c = ~c.
Remark that ¢ € S5 and a,b € S, are centers.

Lemma 1.5 ([6]) Let A € MIM. The following conditions are equivalent:
(1) cis a center of A,
() Ve=1and Ac=0.

Lemma 1.6 Let A cMIM and K(A)~S;. Then

(1) ¢ is not a boolean element of A,

(2¢) c is the unique center of A.

Proof. (¢) If ¢ is a boolean element of A there exisus -c € A4 such that cA —c =0 and
¢V -c=1. Since Jc = ¢, then it results cAJ-c =0 and cvI-c = 1. Therefore I_¢ =

-c and so -c e K(A), contradiction.

(2) Let (1) f € A be a center of A then 31 € {0,¢,1}.
If 3f = 0 then f =0 and so ~ f # f which contradicts (1).
If 3f =1 then 1= A3f =3A f and so, by (1) and lemma 1.5, it results 1 =0,

contradiction.
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Finally we have (2) 3f =c, hence (3) f <c. Since c is a center of A, from (1) and (2)
we have (4) c= ~3~ f < f. From (3) and (4) we obtain f=c. O

It follows at once that
Corollary 1.1 Let AcMIM and K(A)~ S5 Then A is not a Boolean algebra.
Lemma 1.7 Let A c WM. If K(A) ~ S, then a and b are the unique centers of A.

Proof. Suppose that (1) ¢ is a center of A. Since Jec € K(A), we must consider the

following cases:
(i) If 3¢ =0 then ¢ =0, which contradicts (1).

(i) If 3c = a then we have (2) ¢ <a and by (1) ~a <ec. Since a is a center of A it
follows (3) ¢ < c. From (2) and (3) it results ¢ = a.

(+41) If 3c = b similarly as (4) we have c= b.

(7v) If3c=1then (4) Adc=1.On the other hand, from lemma 1.5 we have (5) Adc
—3Ac=0. From (4) and (5) it results 0 =1, contradiction.

By (#) and (iii) we get c=aor c=b. O

The unary operation Vz = ~3~x defined on an MTM - algebra A is called universal

quantifier, and it fulfil the dual properties of the existential quantifier.

Definition 1.4 Let h: A—B be a homomorphism from A into B. The kernel of h s the
set Ker(h)={x e A: h(z)=1}.

Lemma 1.8  The set Ker(h) has the following properties:
N1) Ker(h) is a filter of A (i.e. a filter in the underlying lattice A),
N2) ifz € Ker(h) then Az € Ker(h),
N3) if x € Ker(h) then Va € Ker(h).

If F is a filter of an MTM - algebra A which verifies conditions N2 and N3 we say that F
is a monadic filter (M-filter). If F is a filter verifying N2 is said to be a strong filter
(S -filter) (see [6]).

If F is an M-filter of an algebra A, then the relation: r =y (mod F) is and only if
there exists f € F such that zA f=yAf, is a congruence. If te A, |z| denotes the
congruence class containing z, and A/F denotes the quotient algebra, where the
operations are defined as wsual: |z| Ayl =lzAyl, lziVv]yl=lzvyl, ~ x| =
|~z|, V]z|=1|Yel,3|z|=|3z]|. The function ¢: A—A/F defined by ¢(z) = 2| 1s
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an epimorphism such that Ker(q) = F.

2  Weak implication and deductive systems

We define a new binary operation = on an MIM-algebra A, called weak implication,

as follows:
T=2y=V ~Vzvy.
It is not hard to prove that

Lemma 2.1 The weak implication has the following properties:
W1) r=sz=1,
W2) a=(y=2)=1,
W3)  (z=(y=2))=((z=2y)=(r=2)) = 1,
W4) ((z=y)=z)sa =1,
W5) lsz=uz,
) lsz =1 implies x =1,
W7) T2 A =1,

WS) =V = ].,
W9) z=(zAy)=z=2y,
W10) x <y implies zsx < 2=y,

W11) z <y implies z=y =1.

Definition 2.1 A set D C A is a deductive system (d.s.) if it verifies:
D1) 1eD,
D2) ifz,x=ye D thenye D.

D is a proper d.s. if D # A.

The next lemma gives the relationship between deductive systems and M- filters of

an algebra A.

Lemma 2.2 Let A c MMM and D C A. The following conditions are equivalent:
(1) Disad.s.,
(2t) D is an M- filter.
Proof. (i)=(¢1): From (i) and definition 2.1 we have: (1) 1 € D.
Suppose now that z,y € D then from W2 and W9 we have 1 = y=(r=y) = y=(z=(x A y)).

Therefore y=(z=(zAy)) € D and from (i) and definition 2.1 we get 2 Ay e D. Hence we
obtain: (2) if z,y € D then z Ay e D.
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Assume that z€ D, y€ A and £ <y. Then from W11 and definition 2.1 we obtain that
ye D. So we have: (3)ifze D, ye Aand z <y then ye D.

From (1), (2) and (3) it follows that D is a filter of A. By W7, W8, (:) and definition
2.1 we get Az,VzeD for all z € D. Then D is an M-filter of A.

(11)=>(i): We only check D2. Let z,y€ A such that z,z=yeD. From N2 and N3 we
have that Az, A(z=>y), & Vz € D. Then by N1 it follows that:

AzZAAVTAA(z=y) = AxA AVZIA(V ~VIVv AYy)
=(AzA AY2ZA ~ AVZ)V(AZA AVTA DY)
= AzAAVzA LyeD.
Since AzA AVzA Ay <y, by Nl we have that ye D. O

Corollary 2.1 Let AcMIM and D C A. The following conditions are equivalent:
(1) D is a proper d.s. of A,

(1) D is the kernel of a homomorphism over A.

The family of all deductive systems of A ordered by set —theoretical inclusion, 1s

upper inductive. Then, by Zorn’s lemma, any proper d.s. is contained in a maximal d.s

Taking into account W2. W3, W4, W5 and the results due to A. Monteiro [9] we have
that any proper d.s. of an MIM- algebra A is an intersection of maximal deductive sys -
tems of A.

Then, by well known results of universal algebra we get:

Theorem 2.1 Any non trivial algebra A is a subdirect product of the family
{A/M},, . 8(A) where §(A) is the sets of all mazimal deductive systems of A.

Let AcMTM, H C A and a € A. We shall denote by [H) and [H.a) respectively the d.s.
of A generated by H and H U {a}.

From W2, ¥3 and [9] we have that [H)={z € A: there exist h....,hy € H such that
hy=(hy=.. (hy=x)...) =1} and [H,a) = {z € Aramz € [H)}.

Recall that if X is a non - empty subset of a distributive lattice R with 0 and 1, then
the filter F(X) generated by X is the set of all elements y € R such that there exist
elements z;,25,..,2,€ X such that z;Az,A.. Az, <y. It 1s well known that if X
verifies the property: z,y € X implies z Ay € X, then F(X)={y € R: there exists z€ X
with z < y}.

If X =0, then F(0)={1}. If X = {a} we write F(a) instead of F({a}). F(a) is called a
principal filter. If R is finite, every filter is principal.
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Lemma 2.3 If AcMIM, H C A then [H) = F(V A H).

Proof. We shall prove that F(V A H) is an M-filter of A. Indeed, if ze F(V A H ) then
there exists VAhy,...V AR, eV AH such that VA A AVAh <z. So VARA...A
VAR <VAz and hence Vz and Az belong to F(V A H). Furthermore H C F(V A H)
because VA h <h for all h € H. Then [H) c F(V & H).

Conversely, it is easy to see that [H) is a filter of A. Furthermore V A H ¢ [H).
Indeed, if € H then from W7 and W8 we have V Ak € [H). Hence F(NAH)C[H). O

Corollary 2.2 If AcMIM, ac A and D is a d.s. of A then [D,a)= F(D,Y Aa).
Now we are going to indicate a characterization of maximal d.s. of A.

Lemma 2.4 Let AcMIM and M C A be a d.s.. The following conditions are equivalent:
(t) M is mazimal,
(1) if ag¢g M then there exists me€ M such that V Aanm = 0,

(1) ifVoAavbeM thenae M orbe M,

(v) ifa¢g M then V ~Vaec M,
(v) ifagM and be A then asbe M.

Proof. (i)=(it): If VAaAm #0, for all me M then [M,a) is a proper d.s. of A and
M c [M,a), contradiction.

(12)=>(#%): Assume that a¢ M then by (i) there exists meM such that (1)
VAaAm=0. Since VAavbe M, from (1) we have that (Voaavb)am=bame M.
Hence be M.

(1i)=(¢v): Since VAavV ~Va=1eM and by hypothesis a¢g M we have that
V ~Vae M.

(tv)=>(v): Obvious.

(v)=>(7): Suppose that M is not maximal then there exists a maximal d.s. M’ such that
McM cA Let ae M'\M and b e A\M'. Then by hypothesis a=be M c M’ and so
be M', contradiction. O

3  Simple algebras

Since the homomorphic images of an MIM-algebra A are the algebras A/D, where
D is a d.s. of A, we have:

Lemma 3.1 If A is an MM - algebra then the following conditions are equivalent:
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(2) A is simple,

(%) {1} and A are the only deductive systems of A.

Let A e MM, We shall denote by I(K)={zc A:Ve=c =32} ={re A: Az =a=Vaz}.

It is easy to see that I(K)=I(A)nK(A) is a subalgebra of A. Furhtermore I{K)is a
Boolean algebra.

The proofs of the following lemmas is routine:
Lemma 3.2 F(a) is d.s. of an MIM- algebra A if and only if a € I(K).
Lemma 3.3 If M is a d.s. of an MIM-algebra A. then A/M is simple if and only of

M is mazimal.

Lemma 3.4 F(a) is a mazimal d.s. of an MIM- algebra A if and only if a is an atom
of I(K).

Corollary 3.1 a is an atom of I(K) if and only if A/F(a) is a simple algebra.

We now give the relationship between deductive systems in an algebra A, S -filters in
K(A), M-filters in I(A) and filters in I(K).

Let D,%, Ab and F respectively denote the set of all deductive systems in an algebra
A, the set of all S-filters in K(A). the set of all M-filters in I(A) and the set of all
filters in J(A).

Consider the following functions

ay: D—f, a,(D)=DnK(A),
g: D— b, ay(D)=DnI(A),
oy $—F, ay(F)=FnI(R).
e M—F, a F)=FnI(K).
(11
D — ¥
a, J ‘ e
My B
o,

Then we can prove

Lemma 3.5 If we order the scts D9, Mo and F by inclusion then ay.ay, o3 and o, are

order isomorphisms and the diagram indicated above commutes.
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Theorem 3.1 Let A be a non trivial MTM - algebra. The following conditions are
equivalent:
(z) A is simple,
(4) Voa=0forallacA, asl,
(i) I(K)~S,,
(v) K(A)~S, K(A)~S; or K(A)~S,.

Proof. (:)=>(zi): It follows from the hypothesis and lemma 2.4.
(22)=>(iti): Let a € I(K), a #1. By (4) 0 =V Aq. Then a =0, contradiction.

(22)=(iv): I(K) is a simple Boolean algebra. Then taking into account lemma 3.5 we
conclude that K(A) is a simple four - valued modal algebra. Therefore by [6] we have
the proof.

(2v)=(2): It is an inmediate consequence of lemma 3.5 and the hypothesis. O
The main result of this section is the following theorem.

Theorem 3.2 Let A be a simple MIM - algebra. Then
(1) K(A)~S, implies A~ 5%,
(¢) K(A)=S5 implies A~ S8,

(2d) K(A)~S, implies A~ S,,

where «, B are non negative cardinals.

Proof. Since A is a four - valued modal algebra it is known [6] that A is isomorphic to

a subalgebra of 5 x §4 x 7 that is, there exists a monomorphism 1: A—S5 x S5 x S7.

(z)  From the hypothesis and lemma 1.2 ¥(A) is a Boolean algebra such that -z =
~x, for all z € Y(A). Then S§ny(A)=0 and S7n ¥(A) =0. Hence y(A) =S¢, 6 < a.

(2¢) By the hypothesis and lemma 1.6 ¥(A) has a center, then ¥(A)nSg = 0. If
SinyP(A)#0 then there exist c;,c, € ¢¥(A) such that ¢y # ¢, and ¢, ¢, centers of y(A),
which contradicts lemma 1.6. Therefore ¢(A) = S7, 5 < 3.

(2ir) I S5ne(A)#0 then y(A) has no center, which contradicts lemma 1.7. If
S5nY(A) #£0, there exist ¢;,c, € P(AN\B(¥(A)) such that ¢, # ¢, and ¢;, ¢, centers of A
which contradicts lemma 1.7. Therefore P(A)=5%, p<~v. If p>1 similarly we get a
contradiction. Hence ¥(A4)=S,. O
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