ON AXIOMS AND SOME PROPERTIES OF MONADIC FOUR-VALUED MODAL ALGEBRAS¹

Alicia Ziliani

Departamento de Matemática, Universidad Nacional del Sur, 8000 – Bahía Blanca, Argentina.

Abstract

Four-valued modal algebras were introduced by A. Monteiro in 1978 as a generalization of the three-valued Lukasiewicz algebras [8] and they were studied by I. Loureiro [5,6] (also see [3,4]). In this paper we define monadic four-valued modal algebras and we give a set of independent axioms for them. We study the congruences and homomorphisms, showing that monadic four-valued modal algebras are semisimple and finally we characterize the simple algebras.

Our results generalize those obtained by L. Monteiro [10] for monadic three-valued Lukasiewicz algebras.

1 Preliminary definitions and properties

General references for concepts and results on distributive lattices and universal algebra used in this paper are the books [1] and [2].

Four-valued modal algebras have been defined by A. Monteiro in 1978, in the following way:

Definition 1.1 A four-valued modal algebra $(A, \wedge, \vee, \sim, \nabla, 1)$ is an algebra of type (2,2,1,1,0) which satisfies the following axioms:

- A1) $x \wedge (x \vee y) = x$, A2) $x \wedge (y \vee z) = (z \wedge x) \vee (y \wedge x)$,
- A3) $\sim x = x$, A4) $\sim (x \wedge y) = \sim x \vee \sim y$,
- A5) $\sim x \vee \nabla x = 1$, A6) $\sim x \wedge \nabla x = x \wedge \sim x$.

From the definition, it follows that A is a distributive lattice [12] and a De Morgan algebra ([1,8]). For more details on four-valued modal algebras we lead the readers to [5,6] (see also [3,4]).

Definition 1.2 A monadic four-valued modal algebra (or MTM-algebra) $(A, \wedge, \vee, \sim, \nabla, \exists, 1)$ is an algebra of type (2,2,1,1,1,0) such that $(A, \wedge, \vee, \sim, \nabla, 1)$ is a four-valued modal algebra and \exists is a unary operator on A (called **existential quantifier**) which satis-

¹Some of the results of this paper were presented at the Annual Meeting of the Unión Matemática Argentina (October, 1988) [13].

69

fies the following equations:

E1)
$$x \wedge \exists x = x$$
,

E2)
$$\exists (x \land \exists y) = \exists x \land \exists y,$$

E3)
$$\nabla \exists x = \exists \nabla x$$
,

E4)
$$\triangle \exists x = \exists \triangle x, where \triangle x = \neg \nabla \neg x,$$

E5)
$$\exists \sim \exists x = \sim \exists x$$
.

If A satisfies the axiom $\nabla(x \wedge y) = \nabla x \wedge \nabla y$, then we get a monadic three-valued Lukasiewicz algebra [10].

We proceed to consider some examples of MTM-algebras.

Examples 1.1

.1			, 1	
$\begin{array}{c c} x & \sim \\ \hline 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{c c} x & \nabla x \\ \hline 0 & 1 \end{array}$	$\begin{vmatrix} \exists x \\ 0 \\ 1 \end{vmatrix}$	0	S_2
$egin{array}{c c} x & \sim \\ 0 & 1 \\ c & c \\ 1 & 0 \\ \end{array}$	$\begin{array}{c c} x & \nabla x \\ \hline 0 \\ \vdots & 1 \\ 0 & 1 \end{array}$	$\begin{vmatrix} \exists x \\ 0 \\ 1 \\ 1 \end{vmatrix}$	$\begin{bmatrix} 1 \\ c \\ 0 \end{bmatrix}$	S_3
$egin{array}{c c} x & \sim & \sim \\ 0 & 1 & a \\ b & b & b \\ 1 & 0 & a \\ \end{array}$	$ \begin{array}{c cc} x & \nabla x \\ 1 & 0 \\ a & 1 \\ b & 1 \\ 0 & 1 \end{array} $	$\begin{array}{c c} \exists x \\ 0 \\ a \\ b \\ 1 \end{array}$		$>_{S_4}^b$

We shall denote by MTM the variety of monadic four-valued modal algebras.

We have proved that A1,...,A6,E1,E2,E5 and $\exists \sim \nabla \sim x = \sim \nabla \sim \exists x$ are mutually independent axioms for an MTM-algebra.

Lemma 1.1 If $A \in MTM$ then it holds:

E6)
$$x \leq \exists x$$
,

E7)
$$\exists 1 = 1$$
,

E8)
$$\exists 0=0,$$

E9)
$$\exists \exists x = \exists x,$$

E10)
$$x \le y \text{ implies } \exists x \le \exists y,$$

E11)
$$\sim x \lor \nabla \exists x = 1,$$

E12)
$$\exists x \lor \nabla \sim x = 1$$
,

E13)
$$\exists (x \lor y) = \exists x \lor \exists y,$$

E14) The set $K(A) = \{x \in A : \exists x = x\}$ of the invariant elements of A is a monadic four-valued modal subalgebra of A.

In what follows, for any $A \in \mathbb{MI}$, let B(A) be the set of boolean elements of A, and $I(A) = \{x \in A: \nabla x = x\} = \{x \in A: \Delta x = x\} = \{x \in B(A): -x = \sim x\}$ ([6]), where -x denotes the boolean complement of x, $x \in B(A)$.

In the following lemmas we collect some results that we shall use in the subsequents parts of this paper.

Lemma 1.2 If $A \in MTM$ and $K(A) \simeq S_2$ then A is a Boolean algebra, where $-x = \sim x$, for all $x \in A$.

Proof. Assume that there exists $x \in A$ such that $x \land \sim x \neq 0$. By hypothesis, it follows that $\exists (x \land \sim x) = 1$. Therefore $1 = \Delta \exists (x \land \sim x) = \exists (\Delta x \land \Delta \sim x) = \exists 0 = 0$, contradiction. Then $x \land \sim x = 0$ for all $x \in A$, and so also $\sim x \lor x = 1$ for all $x \in A$. \square

From [6] it is easy to check that

Lemma 1.3 If $A \in MTM$ then I(A) is a subalgebra of A.

Lemma 1.4 If $A \in MTM$ then $(I(A), \exists)$ is a monadic Boolean algebra.

Proof. For all $x \in I(A)$, $x = \nabla x$, then $\sim x = \sim \nabla x$. Therefore $\sim x$ is the boolean complement of x. \square

Definition 1.3 Let $A \in MTM$, then $c \in A$ is a center of A if $c = \sim c$.

Remark that $c \in S_3$ and $a, b \in S_4$ are centers.

Lemma 1.5 ([6]) Let $A \in MTM$. The following conditions are equivalent:

- (i) c is a center of A,
- (ii) $\forall c = 1 \text{ and } \triangle c = 0.$

Lemma 1.6 Let $A \in MTM$ and $K(A) \simeq S_3$. Then

- (i) c is not a boolean element of A,
- (ii) c is the unique center of A.

Proof. (i) If c is a boolean element of A there exists $-c \in A$ such that $c \land -c = 0$ and $c \lor -c = 1$. Since $\exists c = c$, then it results $c \land \exists -c = 0$ and $c \lor \exists -c = 1$. Therefore $\exists -c = -c$ and so $-c \in K(A)$, contradiction.

(ii) Let (1) $f \in A$ be a center of A then $\exists f \in \{0, c, 1\}$. If $\exists f = 0$ then f = 0 and so $\sim f \neq f$ which contradicts (1). If $\exists f = 1$ then $1 = \Delta \exists f = \exists \Delta f$ and so, by (1) and lemma 1.5, it results 1 = 0, contradiction. Finally we have (2) $\exists f = c$, hence (3) $f \leq c$. Since c is a center of A, from (1) and (2) we have (4) $c = {}^{\sim} \exists {}^{\sim} f \leq f$. From (3) and (4) we obtain f = c. \square

It follows at once that

Corollary 1.1 Let $A \in MTM$ and $K(A) \simeq S_3$. Then A is not a Boolean algebra.

Lemma 1.7 Let $A \in MTM$. If $K(A) \simeq S_4$ then a and b are the unique centers of A.

Proof. Suppose that (1) c is a center of A. Since $\exists c \in K(A)$, we must consider the following cases:

- (i) If $\exists c = 0$ then c = 0, which contradicts (1).
- (ii) If $\exists c = a$ then we have (2) $c \le a$ and by (1) $\sim a \le c$. Since a is a center of A it follows (3) $a \le c$. From (2) and (3) it results c = a.
- (iii) If $\exists c = b$ similarly as (ii) we have c = b.
- (iv) If $\exists c = 1$ then (4) $\triangle \exists c = 1$. On the other hand, from lemma 1.5 we have (5) $\triangle \exists c = \exists \triangle c = 0$. From (4) and (5) it results 0 = 1, contradiction.

By (ii) and (iii) we get c = a or c = b. \square

The unary operation $\forall x = \neg \exists \neg x$ defined on an MTM-algebra A is called universal quantifier, and it fulfil the dual properties of the existential quantifier.

Definition 1.4 Let $h: A \rightarrow B$ be a homomorphism from A into B. The kernel of h is the set $K \in r(h) = \{x \in A: h(x) = 1\}$.

Lemma 1.8 The set Ker(h) has the following properties:

- N1) $K\epsilon r(h)$ is a filter of A (i.e. a filter in the underlying lattice A).
- N2) if $x \in Ker(h)$ then $\triangle x \in Ker(h)$,
- N3) if $x \in Ker(h)$ then $\forall x \in Ker(h)$.

If F is a filter of an MTM-algebra A which verifies conditions N2 and N3 we say that F is a monadic filter (M-filter). If F is a filter verifying N2 is said to be a strong filter (S-filter) (see [6]).

If F is an M-filter of an algebra A, then the relation: $x \equiv y \pmod{F}$ is and only if there exists $f \in F$ such that $x \wedge f = y \wedge f$, is a congruence. If $x \in A$, |x| denotes the congruence class containing x, and A/F denotes the quotient algebra, where the operations are defined as usual: $|x| \wedge |y| = |x \wedge y|$, $|x| \vee |y| = |x \vee y|$, $\sim |x| = |x|$, |x| + |x| is |x| + |x|. The function $q: A \rightarrow A/F$ defined by |x| + |x| is

an epimorphism such that Ker(q) = F.

2 Weak implication and deductive systems

We define a new binary operation \Rightarrow on an MTM-algebra A, called weak implication, as follows:

$$x\Rightarrow y = \nabla \sim \forall x \lor y.$$

It is not hard to prove that

Lemma 2.1 The weak implication has the following properties:

- V(1) $x \Rightarrow x = 1$,
- $W2) \quad x \Rightarrow (y \Rightarrow x) = 1,$
- $(x \Rightarrow (y \Rightarrow z)) \Rightarrow ((x \Rightarrow y) \Rightarrow (x \Rightarrow z)) = 1,$
- $((x \Rightarrow y) \Rightarrow x) \Rightarrow x = 1,$
- $V5) \quad 1 \Rightarrow x = x,$
- $V6) \quad 1 \Rightarrow x = 1 \text{ implies } x = 1,$
- W7) $x \Rightarrow \Delta x = 1$,
- $\forall x \Rightarrow \forall x = 1.$
- $\mathsf{W9}) \quad x \Rightarrow (x \land y) = x \Rightarrow y,$
- $W10) \quad x \le y \ implies \ z \Rightarrow x \le z \Rightarrow y,$
- W11) $x \le y \text{ implies } x \Rightarrow y = 1.$

Definition 2.1 A set $D \subseteq A$ is a deductive system (d.s.) if it verifies:

- D1) $1 \in D$,
- D2) if $x, x \Rightarrow y \in D$ then $y \in D$.

D is a proper d.s. if $D \neq A$.

The next lemma gives the relationship between deductive systems and M-filters of an algebra A.

Lemma 2.2 Let $A \in MTM$ and $D \subseteq A$. The following conditions are equivalent:

- (i) D is a d.s.,
- (ii) D is an M-filter.

Proof. (i) \Rightarrow (ii): From (i) and definition 2.1 we have: (1) $1 \in D$.

Suppose now that $x, y \in D$ then from W2 and W9 we have $1 = y \Rightarrow (x \Rightarrow y) = y \Rightarrow (x \Rightarrow (x \land y))$. Therefore $y \Rightarrow (x \Rightarrow (x \land y)) \in D$ and from (i) and definition 2.1 we get $x \land y \in D$. Hence we obtain: (2) if $x, y \in D$ then $x \land y \in D$. Assume that $x \in D$, $y \in A$ and $x \le y$. Then from W11 and definition 2.1 we obtain that $y \in D$. So we have: (3) if $x \in D$, $y \in A$ and $x \le y$ then $y \in D$.

From (1), (2) and (3) it follows that D is a filter of A. By W7, W8, (i) and definition 2.1 we get $\Delta x, \forall x \in D$ for all $x \in D$. Then D is an M-filter of A.

 $(ii)\Rightarrow(i)$: We only check D2. Let $x,y\in A$ such that $x,x\Rightarrow y\in D$. From N2 and N3 we have that $\triangle x, \triangle (x\Rightarrow y), \triangle \forall x\in D$. Then by N1 it follows that:

$$\begin{split} \triangle\,x \wedge \triangle\,\forall x \wedge \triangle\,(x \Rightarrow y) &= \triangle\,x \wedge \triangle\,\forall x \wedge (\,\nabla\, \sim \forall x \vee \triangle\,y) \\ &= (\,\triangle\,x \wedge \triangle\,\forall x \wedge \sim \triangle\,\forall x) \vee (\,\triangle\,x \wedge \triangle\,\forall x \wedge \triangle\,y) \\ &= \triangle\,x \wedge \triangle\,\forall x \wedge \triangle\,y \in D. \end{split}$$

Since $\triangle x \land \triangle \forall x \land \triangle y \leq y$, by N1 we have that $y \in D$. \square

Corollary 2.1 Let $A \in MTM$ and $D \subseteq A$. The following conditions are equivalent:

- (i) D is a proper d.s. of A,
- (ii) D is the kernel of a homomorphism over A.

The family of all deductive systems of A ordered by set-theoretical inclusion, is upper inductive. Then, by Zorn's lemma, any proper d.s. is contained in a maximal d.s.

Taking into account W2, W3, W4, W5 and the results due to A. Monteiro [9] we have that any proper d.s. of an MTM-algebra A is an intersection of maximal deductive systems of A.

Then, by well known results of universal algebra we get:

Theorem 2.1 Any non trivial algebra A is a subdirect product of the family $\{A/M\}_{M \in \mathcal{S}(A)}$, where $\mathcal{S}(A)$ is the sets of all maximal deductive systems of A.

Let $A \in MTM$, $H \subseteq A$ and $a \in A$. We shall denote by [H] and [H,a] respectively the d.s. of A generated by H and $H \cup \{a\}$.

From W2, W3 and [9] we have that $[H) = \{x \in A: \text{ there exist } h_1, \ldots, h_k \in H \text{ such that } h_1 \Rightarrow (h_2 \Rightarrow \ldots (h_k \Rightarrow x) \ldots) = 1\}$ and $[H, a) = \{x \in A: a \Rightarrow x \in [H)\}.$

Recall that if X is a non-empty subset of a distributive lattice R with 0 and 1, then the filter F(X) generated by X is the set of all elements $y \in R$ such that there exist elements $x_1, x_2, ..., x_n \in X$ such that $x_1 \wedge x_2 \wedge ... \wedge x_n \leq y$. It is well known that if X verifies the property: $x, y \in X$ implies $x \wedge y \in X$, then $F(X) = \{y \in R : \text{ there exists } z \in X \text{ with } z \leq y\}$.

If $X = \emptyset$, then $F(\emptyset) = \{1\}$. If $X = \{a\}$ we write F(a) instead of $F(\{a\})$. F(a) is called a principal filter. If R is finite, every filter is principal.

Lemma 2.3 If $A \in MTM$, $H \subseteq A$ then $[H] = F(\forall \triangle H)$.

Proof. We shall prove that $F(\forall \triangle H)$ is an M-filter of A. Indeed, if $x \in F(\forall \triangle H)$ then there exists $\forall \triangle h_1, ..., \forall \triangle h_k \in \forall \triangle H$ such that $\forall \triangle h_1 \land ... \land \forall \triangle h_k \leq x$. So $\forall \triangle h_1 \land ... \land \forall \triangle h_k \leq x$ and hence $\forall x$ and $\triangle x$ belong to $F(\forall \triangle H)$. Furthermore $H \subseteq F(\forall \triangle H)$ because $\forall \triangle h \leq h$ for all $h \in H$. Then $[H) \subseteq F(\forall \triangle H)$.

Conversely, it is easy to see that [H) is a filter of A. Furthermore $\forall \triangle H \subseteq [H)$. Indeed, if $h \in H$ then from $\forall A \in H$ and $\forall A \in H$. Hence $A \in H$. $\Box A \in H$.

Corollary 2.2 If $A \in MTM$, $a \in A$ and D is a d.s. of A then $[D, a) = F(D, \forall \triangle a)$.

Now we are going to indicate a characterization of maximal d.s. of A.

Lemma 2.4 Let $A \in MTM$ and $M \subseteq A$ be a d.s.. The following conditions are equivalent:

- (i) M is maximal,
- (ii) if $a \notin M$ then there exists $m \in M$ such that $\forall \triangle a \land m = 0$,
- (iii) if $\forall \triangle a \lor b \in M$ then $a \in M$ or $b \in M$,
- (iv) if $a \notin M$ then $\nabla \sim \forall a \in M$,
- (v) if $a \notin M$ and $b \in A$ then $a \Rightarrow b \in M$.

Proof. (i) \Rightarrow (ii): If $\forall \triangle a \land m \neq 0$, for all $m \in M$ then [M, a) is a proper d.s. of A and $M \subset [M, a)$, contradiction.

- (ii) \Rightarrow (iii): Assume that $a \notin M$ then by (ii) there exists $m \in M$ such that (1) $\forall \triangle a \land m = 0$. Since $\forall \triangle a \lor b \in M$, from (1) we have that $(\forall \triangle a \lor b) \land m = b \land m \in M$. Hence $b \in M$.
- $(iii)\Rightarrow (iv)$: Since $\forall \triangle a \lor \nabla \sim \forall a=1 \in M$ and by hypothesis $a \notin M$ we have that $\nabla \sim \forall a \in M$.
- $(iv)\Rightarrow(v)$: Obvious.
- $(v)\Rightarrow(i)$: Suppose that M is not maximal then there exists a maximal d.s. M' such that $M \subset M' \subset A$. Let $a \in M' \setminus M$ and $b \in A \setminus M'$. Then by hypothesis $a\Rightarrow b \in M \subset M'$ and so $b \in M'$, contradiction. \square

3 Simple algebras

Since the homomorphic images of an MTM-algebra A are the algebras A/D, where D is a d.s. of A, we have:

Lemma 3.1 If A is an MTM - algebra then the following conditions are equivalent:

- (i) A is simple,
- (ii) {1} and A are the only deductive systems of A.

Let $A \in \mathbb{M}$. We shall denote by $I(K) = \{x \in A : \forall x = x = \exists x\} = \{x \in A : \triangle x = x = \forall x\}$. It is easy to see that $I(K) = I(A) \cap K(A)$ is a subalgebra of A. Furthermore I(K) is a

Boolean algebra.

The proofs of the following lemmas is routine:

Lemma 3.2 F(a) is d.s. of an MTM-algebra A if and only if $a \in I(K)$.

Lemma 3.3 If M is a d.s. of an MTM-algebra A, then A/M is simple if and only if M is maximal.

Lemma 3.4 F(a) is a maximal d.s. of an MTM-algebra A if and only if a is an atom of I(K).

Corollary 3.1 a is an atom of I(K) if and only if A/F(a) is a simple algebra.

We now give the relationship between deductive systems in an algebra A, S-filters in K(A), M-filters in I(A) and filters in I(K).

Let $\mathfrak{I}, \mathfrak{I}, \mathcal{M}$ and \mathfrak{I} respectively denote the set of all deductive systems in an algebra A, the set of all S-filters in K(A), the set of all M-filters in I(A) and the set of all filters in I(K).

Consider the following functions

$$\begin{split} \alpha_1 \colon \mathfrak{I} &\to \mathfrak{F}, & \alpha_1(D) = D \cap K(A), \\ \alpha_2 \colon \mathfrak{I} &\to \mathcal{M}_{\!\!\!\text{b}}, & \alpha_2(D) = D \cap I(A), \\ \alpha_3 \colon \mathfrak{I} &\to \mathfrak{F}, & \alpha_3(F) = F \cap I(K), \\ \alpha_4 \colon \mathcal{M}_{\!\!\!\text{b}} &\to \mathfrak{F}, & \alpha_4(F) = F \cap I(K). \end{split}$$

$$\begin{array}{ccc}
\mathfrak{I} & \xrightarrow{\alpha_1} & \mathfrak{I} \\
\alpha_2 \downarrow & & \downarrow \alpha_3 \\
& \xrightarrow{\alpha_4} & \mathfrak{I}
\end{array}$$

Then we can prove

Lemma 3.5 If we order the sets $\mathfrak{I}, \mathfrak{I}, \mathfrak{M}$ and \mathfrak{I} by inclusion then $\alpha_1, \alpha_2, \alpha_3$ and α_4 are order isomorphisms and the diagram indicated above commutes.

Theorem 3.1 Let A be a non trivial MTM-algebra. The following conditions are equivalent:

- (i) A is simple,
- (ii) $\forall \triangle a = 0 \text{ for all } a \in A, a \neq 1,$
- (iii) $I(K) \simeq S_2$,
- (iv) $K(A) \simeq S_2$, $K(A) \simeq S_3$ or $K(A) \simeq S_4$.

Proof. $(i)\Rightarrow(ii)$: It follows from the hypothesis and lemma 2.4.

- $(ii) \Rightarrow (iii)$: Let $a \in I(K)$, $a \neq 1$. By (ii) $0 = \forall \triangle a$. Then a = 0, contradiction.
- $(iii)\Rightarrow (iv)$: I(K) is a simple Boolean algebra. Then taking into account lemma 3.5 we conclude that K(A) is a simple four-valued modal algebra. Therefore by [6] we have the proof.
- (iv) \Rightarrow (i): It is an inmediate consequence of lemma 3.5 and the hypothesis. \Box The main result of this section is the following theorem.

Theorem 3.2 Let A be a simple MTM - algebra. Then

- (i) $K(A) \simeq S_2$ implies $A \simeq S_2^{\alpha}$,
- (ii) $K(A) \simeq S_3$ implies $A \simeq S_3^{\beta}$,
- (iii) $K(A) \simeq S_4$ implies $A \simeq S_4$,

where α, β are non negative cardinals.

Proof. Since A is a four-valued modal algebra it is known [6] that A is isomorphic to a subalgebra of $S_2^{\alpha} \times S_3^{\beta} \times S_4^{\gamma}$ that is, there exists a monomorphism $\psi: A \to S_2^{\alpha} \times S_3^{\beta} \times S_4^{\gamma}$.

- (i) From the hypothesis and lemma 1.2 $\psi(A)$ is a Boolean algebra such that -x = -x, for all $x \in \psi(A)$. Then $S_3^{\beta} \cap \psi(A) = \emptyset$ and $S_4^{\gamma} \cap \psi(A) = \emptyset$. Hence $\psi(A) = S_2^{\delta}$, $\delta \leq \alpha$.
- (ii) By the hypothesis and lemma 1.6 $\psi(A)$ has a center, then $\psi(A) \cap S_2^{\alpha} = \emptyset$. If $S_4^{\gamma} \cap \psi(A) \neq \emptyset$ then there exist $c_1, c_2 \in \psi(A)$ such that $c_1 \neq c_2$ and c_1, c_2 centers of $\psi(A)$, which contradicts lemma 1.6. Therefore $\psi(A) = S_3^{\eta}$, $\eta \leq \beta$.
- (iii) If $S_2^{\alpha} \cap \psi(A) \neq \emptyset$ then $\psi(A)$ has no center, which contradicts lemma 1.7. If $S_3^{\beta} \cap \psi(A) \neq \emptyset$, there exist $c_1, c_2 \in \psi(A) \setminus B(\psi(A))$ such that $c_1 \neq c_2$ and c_1, c_2 centers of A which contradicts lemma 1.7. Therefore $\psi(A) = S_4^{\rho}$, $\rho \leq \gamma$. If $\rho > 1$ similarly we get a contradiction. Hence $\psi(A) = S_4$. \square

Acknowledgement

The author would like to thank Dr. A. V. Figallo who suggested the problem and was a valuable guide throughout the preparation of this paper.

References

- [1] R. Balbes and Ph. Dwinger, *Distributive lattices*. University of Missouri Press (1974).
- [2] S. Burris and H.P. Sankappanavar, A course in Universal Algebra. Graduate Texts in Mathematics 78, Springer, Berlin (1981).
- [3] A. Figallo, Notes on generalized N-lattices. Revista de la Unión Matemática Argentina 35 (1990), 61-65.
- [4] A. Figallo, On the congruence in four-valued modal algebras. Portugaliae Math. 49 (1992), 249-261.
- [5] I. Loureiro, Axiomatisation et propriétés des algèbres modales tétravalentes. C.R.
 Acad. Sc. Paris, t. 295 (22 novembre 1982), Serie I, 555 557
- [6] I. Loureiro, Algebras modais tetravalentes. Doctoral thesis. Faculdade de Ciencias de Lisboa, 1983.
- [7] A. Monteiro, Sur la définition des algèbres de Lukasiewicz trivalentes. Bull.
 Math. Soc. Sci. Math. Phys., R.P. Roum 7 (55) (1963), 3-12.
- [8] A. Monteiro, Matrices de Morgan caractéristiques pour le calcul propositionnel classique. An. Acad. Brasil. Ciên. 52 (1960), 1-7.
- [9] A. Monteiro, Sur les algèbres de Heyting symétriques. Portugaliae Math. 39 (1980), 1-237.
- [10] L. Monteiro, Algebras de Lukasiewicz trivalentes monádicas. Notas de Lógica Matemática 32, (1974). Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina.
- [11] L. Monteiro, Axiomes indépendants pour les algèbres de Lukasiewicz trivalentes. Notas de Lógica Matemática 22, (1964). Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina.
- [12] M. Sholander, Postulates for distributive lattices. Can. J. Math. 3, (1951), 28 - 30.
- [13] A. Ziliani, Algebras tetravalentes modales monádicas. Revista de la Unión Matemática Argentina 36 (1990), 224.