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HAAR TYPE SYSTEMS AND BANACH FUNCTION SPACES ON SPACES OF
HOMOGENEOUS TYPE

LUIS NOWAK, GLADIS PRADOLINI, AND WILFREDO A. RAMOS

ABSTRACT. In this note we prove that the Haar type systems defined on spaces of homo-
geneous type are unconditional bases for a wide family of Banach function spaces. Also,
we give a characterization of these spaces via Haar coefficients. The main tool used in the
proof is a generalization of the technique of extrapolation of Rubio de Francia in Banach
function spaces defined on spaces of homogeneous type.

1. INTRODUCTION AND MAIN RESULT

In the setting of L2(Rn) one of the main properties of the orthonormal wavelets bases is
that they constitute unconditional bases for many spaces of functions that arise in Harmonic
Analysis. For example, if Ψ is such a basis with certain given properties then the system
Ψ is an unconditional basis for the weighted Lebesgue spaces Lp

w(Rn) with 1 < p < ∞,
where the weight w belongs to the classical Muckenhoupt Ap class. The same is valid when
we consider the Lorentz spaces Lp,q(Rn) with 1 < p,q < ∞. The characterization of these
functional spaces is given in terms of the coefficients of wavelets in the representation of
the function (see for example [27]). Moreover if we suppose certain regularity properties on
the functions ψ ∈Ψ, then it is known that the system Ψ is also an unconditional basis for a
large class of spaces that include the mentioned above as well as Sobolev spaces W k,p(Rn)
and Hardy spaces Hp(Rn) ([21, 10]).

In the Euclidean context, Izuki proved in [17] that the bases of wavelets with certain
conditions of regularity are unconditional bases for the variable exponent Lebesgue spaces
Lp(·)(Rn). These spaces seem to be the most adequate context in order to describe the
behaviour of certain fluids, called electrorheologic fluids ([26]). In order to prove the result
in [17], the author used the extrapolation technique due to Rubio de Francia ([24, 25]), by
virtue of the fact that the boundedness of Hardy-Littlewood maximal operators on Lp(·)(Rn)
is fulfilled.

In the setting of variable Lebesgue spaces, several authors studied the continuity proper-
ties of the operators that arise in connection with the partial differential equations modelling
many situations. Particularly, in [11] and [8] the authors proved the boundedness of the
Hardy-Littlewood maximal operator on Lp(·)(Rn) by requiring certain continuity properties
on the exponent p(·) and in [15] the same result is proved in the context of metric spaces.

The systems Ψ mentioned above characterize the functional spaces in the sense that the
norm of the function f involved can be given in terms of the coefficients of wavelets 〈ψ, f 〉
in the representation formula ∑〈ψ, f 〉ψ . In this paper we shall adopt this point of view in
the framework of metric spaces with a doubling measure. More precisely, we will prove that
the Haar type systems are unconditional bases for certain Banach function spaces (B.F.S.).
As an application of our main result we obtain the characterization of several spaces via the
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coefficient of wavelets such as Lebesgue and Lorentz spaces on spaces of homogeneus type
and their variable versions.

In order to state our main result we give some definitions and properties that we shall be
working with.

We denote L∞
c as the set

L∞
c = L∞

c (X ,µ) = { f ∈ L∞(X) / supp( f )⊂ B(x0,r) for some x0 ∈ X ,r > 0}.
We shall say that B is a B.F.S. with the bounded maximal property (B.M.P.) if L∞

c is dense
in B and there exists a real number p1 > 1 such that B1/p1 is a B.F.S. with

‖MD f‖(B1/p1)
′ ≤ c‖ f‖(B1/p1)

′ ,

for every f ∈
(
B

1
p1

)′
, where MD is the dyadic Hardy-Littlewood maximal operator defined

in Section §2, where B1/p1 is also defined.

We are now in a position to state our main result.

Theorem 1.1. Let (X ,d,µ) be a space of homogeneous type and let H̃ be a Haar type
system. Let B be a B.F.S. with the B.M.P. Then H̃ is an unconditional basis for B. More-
over, there exist two positive constants c1 and c2 such that for every f ∈ B the following
inequalities hold

c1 ‖ f‖B ≤ ‖S f‖B ≤ c2 ‖ f‖B , (1.1)
where

S f (x) =

(
∑

h∈H̃
|〈 f ,h〉|2 |h(x)|2

)1/2

.

For the definition of unconditional bases see [2, Section 7].

Before describing the organization of the paper, we give some comments on the previous
theorem. At first, given an arbitrary function f in B, the definition of S f may not make
sense. But as we shall be working in B with B.M.P., the operator S can be defined by using
an extension argument.

The paper is organized as follows. In Section §2 we give some preliminaries. In Sec-
tion §3 we define the Haar type system and recall some useful properties in the context
of weighted Lebesgue spaces defined on spaces of homogeneous type. In Section §4 we
give the extrapolation theorem in the context of B.F.S. and the proof of the main result. In
Section §5 we show some applications of Theorem 1.1.

We would like to thank the referee for their valuable suggestions and comments.

2. PRELIMINARIES. DYADIC ANALYSIS ON SPACES OF HOMOGENEOUS TYPE

Let us first recall the definition and basic properties of the spaces of homogeneous type.
If X is a set, a nonnegative symmetric function d defined on X×X is called a quasi-distance
in X if there exists a constant K ≥ 1 such that

d(x,y) = 0 if and only if x = y

d(x,y) = d(y,x)

d(x,y)≤ K[d(x,z)+d(z,y)],

for every x,y,z ∈ X .
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HAAR TYPE SYSTEMS AND BFS ON SPACES OF HOMOGENEOUS TYPE 165

We shall say that (X ,d,µ) is a space of homogeneous type if d is a quasi-distance on X ,
and µ is a positive Borel measure defined on a σ -algebra of subsets of X which contains
the d-balls that satisfies a doubling condition, that is, there exists a positive constant C such
that the inequalities

0 < µ(B(x,2r)) ≤ C µ(B(x,r)) < ∞

hold for every x ∈ X and every r > 0.
It is well known that the d-balls are generally not open sets. Nevertheless in [20],

R. Macías and C. Segovia proved that if d is a quasi-distance on X , then there exists a
distance ρ and a number α ≥ 1 such that d is equivalent to ρα , and the ρα -balls are open
sets. This remark allows us to consider (X ,d,µ) to be a space of homogeneous type where
d is a distance on X . In order to apply the Lebesgue Differentiation Theorem we shall also
suppose that continuous functions are dense in L1(X ,µ) if µ(X) = ∞.

The construction of dyadic type families in metric or quasi-metric spaces with some inner
and outer metric control of the sizes of the dyadic sets is given by M. Christ in [5]. We now
introduce a special family of such dyadic subsets. These families satisfy all the relevant
properties of the usual dyadic cubes in Rn. Actually, the only properties of Christ’s cubes
needed in our context of spaces of homogeneous type are contained in the next definition
given in [3].

Definition 2.1. We say that D =
⋃

j∈ZD j is a dyadic family on X with parameter δ ∈ (0,1),
briefly that D belongs D(δ ), if each D j is a family of open subsets Q of X , such that

(d.1) For every j ∈ Z the cubes in D j are pairwise disjoint.
(d.2) For every j ∈ Z the family D j covers almost all X in the sense that

µ(X−
⋃

Q∈D j Q) = 0.
(d.3) If Q ∈D j and i < j, then there exists a unique Q̃ ∈D i such that Q⊆ Q̃.
(d.4) If Q ∈D j and Q̃ ∈D i with i≤ j, then either Q⊆ Q̃ or Q∩ Q̃ = /0.
(d.5) There exist two constants a1 and a2 such that for each Q∈D j there is a point x ∈Q

for which B(x,a1δ j)⊆ Q⊆ B(x,a2δ j).

The main properties of the dyadic family D defined above are given in the following
result (see [2]).

Proposition 1. Let D be a dyadic family in the class D(δ ). Then

(d.6) There exists a positive integer N depending only on the doubling constant such that
for every j ∈ Z and all Q ∈ D j the inequalities 1 ≤ #(O(Q)) ≤ N hold, where
O(Q) = {Q′ ∈D j+1 : Q

′ ⊆ Q}.
(d.7) X is bounded if and only if there exists a dyadic cube Q in D such that X = Q.
(d.8) The families D̃ j = {Q ∈ D j : #({Q′ ∈ D j+1 : Q

′ ⊆ Q}) > 1}, j ∈ Z are pairwise
disjoint.

The dyadic Hardy-Littlewood maximal operator associated to D is defined, for a locally
integrable function f , by

MD f (x) = sup
Q3x

1
µ(Q)

∫
Q
| f | dµ,

where the supremum is taken over the dyadic cubes Q ∈D containing x.
Given a dyadic family D we say that a nonnegative and locally integrable function w is a

Muckenhoupt type dyadic weight, w ∈ Ady
p , 1 < p < ∞, if the inequality
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(
1

µ(Q)

∫
Q

w(x)dµ(x)
)(

1
µ(Q)

∫
Q

w(x)−
1

p−1 dµ(x)
)p−1

≤C (2.1)

holds for some constant C and every dyadic cube Q ∈D .
When p = 1 we say that w ∈ Ady

1 if the inequality

w(Q)

µ(Q)
≤Cw(x) (2.2)

holds for almost every x ∈ Q and for every dyadic cube Q ∈D . The class Ady
∞ is defined as

Ady
∞ =

⋃
p≥1

Ady
p . (2.3)

Let us now introduce the basic notions of Banach function spaces. We refer to [4] for
complete details. Let (X ,µ) be a σ -finite measure space. We shall write Mµ and M+

µ

to denote the set of all µ-measurable functions f : X −→ [−∞,+∞] and the subset of Mµ

whose values lie in [0,∞], respectively. A function norm is a mapping ρ : M+
µ −→ [0,∞]

such that for all f ,g and fn in M+
µ , n ∈ Z, the following statements hold:

• ρ( f ) = 0 if and only if f = 0 µ-a.e.,
• for all a > 0 we have that ρ(a f ) = aρ( f ),
• ρ( f +g)≤ ρ( f )+ρ(g),
• if 0≤ g≤ f µ-a.e., then ρ(g)≤ ρ( f ),
• if 0≤ fn↗ f µ-a.e., then ρ( fn)↗ ρ( f ),
• if E ⊆ X with µ(E)< ∞, then ρ(χE )< ∞,
• for each E ⊆X with µ(E)<∞, there exists a positive constant C such that

∫
E f dµ ≤

Cρ( f ), for every f .
The space B= { f ∈Mµ : ‖ f‖B < ∞} is a normed Banach space where the norm is given

by ‖ f‖B = ρ(| f |). Such space is called a Banach function space.
If B denotes a Banach function space defined on X with norm given by ‖·‖B, we define

the scale space Br, 0 < r < ∞, as the µ-measurable functions f such that | f |r ∈ B, with

“norm” given by ‖ f‖Br = ‖| f |r‖
1
r
B. If r≥ 1, then Br is a B.F.S. However, if r < 1, then Br is

not necessarily a B.F.S.; the simplest example is the case B= L1(X).
The associated space B′ is the set of the µ-measurable functions f : X → [−∞,+∞] such

that the quantity

sup
{∫

X
| f (x)g(x)| dµ(x), g ∈ B, ‖g‖B ≤ 1

}
is finite. This space B′ is a B.F.S. and the following generalized Hölder inequality holds∫

X
| f (x)g(x)|dµ(x)≤ ‖ f‖B‖g‖B′ ,

for all f ∈ B and g ∈ B′ .

3. HAAR SYSTEMS AND WEIGHTED LEBESGUE SPACES

The underlying algebraic structure in the Euclidean context is crucial for the construction
of systems of wavelets. In fact, they can be obtained by translations and dilations of some
given function. In the general setting of spaces of homogeneous type this structure is not
given and must be replaced by geometric arguments.
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For a given dyadic family D in the class D(δ ) it was proved in [1] and [2] that we
can always construct Haar type bases H , of Borel measurable simple real functions h,
satisfying the following properties:

(h.1) For each h ∈H there exists a unique j ∈ Z and a cube Q = Q(h) ∈ D̃ j such that
{x ∈ X : h(x) 6= 0} ⊆ Q, and this property does not hold for any cube in D j+1.

(h.2) For every Q ∈ D̃ =
⋃

j∈ZD̃ j there exist exactly MQ = #(O(Q))− 1 ≥ 1 functions
h ∈ H such that (h.1) holds. We shall write HQ to denote the set of all these
functions h.

(h.3) For each h ∈H we have that
∫

X hdµ = 0.
(h.4) For each Q ∈ D̃ let VQ denote the vector space of all functions on Q which are

constant on each Q
′ ∈O(Q). Then the system {χQ/µ(Q)1/2}

⋃
HQ is an orthonor-

mal basis for VQ.

By H̃ we shall denote the Haar type system H when µ(X) = ∞ and H ∪{µ(X)−
1
2 }

when µ(X)< ∞.

As an easy consequence of the properties above, in [2] the authors obtained the following
results. In this context L2

w := { f :
∫

X | f |
2 wdµ < ∞}.

Theorem 3.1. Let D be a dyadic family on X such that D belongs to the class D(δ ). Then
every Haar type system H̃ associated to D is an orthonormal basis in L2(X ,µ).

In [2] the authors prove that the Haar type systems associated to Christ’s dyadic cubes
are unconditional bases for the spaces Lp0

w with w ∈ Ady
p0 and 1 < p0 < ∞. More specifically,

Theorem 3.2. Let (X ,d,µ) be a space of homogeneous type and let H̃ be a Haar system
associated to a dyadic family D and let S be the square function. If 1 < p0 < ∞ and w∈ Ady

p0

then there exist two positive constants C1 and C2 depending on the Ady
p0 constant of w such

that for all f ∈ Lp0
w (X ,µ) we have that

C1 ‖ f‖L
p0
w
≤ ‖S f‖L

p0
w
≤ C2 ‖ f‖L

p0
w
.

Moreover, H̃ is an unconditional basis for Lp0
w (X ,µ).

4. EXTRAPOLATION: PROOF OF THEOREM 1.1

This section is devoted to proving Theorem 1.1. An important tool used in this proof is
an extrapolation theorem in B.F.S. that generalizes the well known result due to Rubio de
Francia. In order to state the extrapolation theorem we introduce the following definition.

Definition 4.1. (B-admissible family) Let F be a family of ordered pairs ( f ,g) of non
negative, measurable functions on X . We say that F is B-admissible if given ( f ,g) ∈ F the
following statements hold

• (
∫

X f (x)p0w(x)dµ(x))
1

p0 < ∞ for some p0 > 1 and for every w ∈ Ady
p0 .

• ‖ f‖B < ∞.

We are now in a position to establish the extrapolation theorem.

Theorem 4.2. (Extrapolation) Let D be a dyadic family on X such that D belongs to
D(δ ). Let B be a B.F.S. on X. Let F = {( f ,g)} be a B-admissible family. Suppose that
there exists p1 > 1 such that B1/p1 is a B.F.S. and

‖MDv‖(
B

1
p1

)′ ≤C‖v‖(
B

1
p1

)′ (4.1)
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for every function v ∈
(
B

1
p1

)′
, with C =C(B).

If there exists p0 ∈ (1,∞) such that for all w ∈ Ady
p0

‖ f‖L
p0
w (X) ≤C0 ‖g‖L

p0
w (X) ∀( f ,g) ∈ F (4.2)

with C0 =C0(w, p0) independent of ( f ,g), then the inequality

‖ f‖Bq ≤C1 ‖g‖Bq ∀( f ,g) ∈ F (4.3)

holds with C1 =C1(B,q) independent of ( f ,g), and 1/p1 < q.

In the Euclidean context, this result was proved in [7] and [9]; see also [14]. Also, it can
be obtained as a corollary of the following extrapolation result (see Theorem 5.1 in [23]).

Theorem 4.3. Let D be a dyadic family on X such that D belongs to class D(δ ) and let B
be a B.F.S. on X. Let F be a B-admissible family of pairs ( f ,g). Suppose that for some p0,
0 < p0 < ∞, and every w ∈ Ady

1 ,∫
X

f (x)p0w(x)dµ(x)≤C
∫

X
g(x)p0w(x)dµ(x). (4.4)

If there exists q0, p0 ≤ q0 < ∞, such that B1/q0 is a B.F.S. and MD is bounded on (B1/q0)′,
then

‖ f‖B ≤C‖g‖B . (4.5)

In Rn the theorem above was proved in ([9, Theorem 4.6]) for a more general family
than the classic dyadic cubes, and the same proof can be adapted to the context of spaces of
homogeneous type.

Now we prove the main result of this paper.

Proof of Theorem 1.1. Let f ∈ L∞
c and F ⊂ H̃ with ](F)< ∞ then

SF f =

(
∑
h∈F
|〈 f ,h〉|2 |h|2

) 1
2

∈ L∞
c ⊂ B.

Then, defining F1 = {(| f | ,S f ) : f ∈ L∞
c } and F2,F = {(SF f , | f |) : f ∈ L∞

c }, we obtain two
B-admissible families and, by Theorem 3.2, it is easy to check that the following inequalities
also hold

C1 ‖ f‖L
p0
w
≤ ‖S f‖L

p0
w
, ‖SF f‖L

p0
w
≤C2 ‖ f‖L

p0
w
, ∀w ∈ Ady

p0
. (4.6)

Now, by the hypothesis and applying the extrapolation Theorem 4.2 we obtain that there
exist two positive constants C′1 and C′2 such that

‖ f‖B ≤C′1 ‖S f‖B (4.7)

and
‖SF f‖B ≤C′2 ‖ f‖B . (4.8)

It is important to note that C′2 does not depend on F ⊂ H̃ .

Let {Fn} be a sequence such that Fn ⊂ Fn+1 and ∪Fn = H̃ . Then for every function
f ∈ L∞

c and x ∈ X we obtain that SFn f (x)↗ S f (x), and thus, by the Banach function space
properties and (4.8),

‖S f‖B = lim
n→∞
‖SFn f‖B ≤C2 ‖ f‖B ∀ f ∈ L∞

c (X). (4.9)

Actas del XII Congreso Dr. Antonio A. R. Monteiro (2013), 2014



HAAR TYPE SYSTEMS AND BFS ON SPACES OF HOMOGENEOUS TYPE 169

Then, from (4.7) and (4.9) we can conclude that

C1 ‖ f‖B ≤ ‖S f‖B ≤C2 ‖ f‖B ∀ f ∈ L∞
c (X). (4.10)

The general result for f ∈ B follows by applying a density argument, as follows.

Let us first see that ‖S f‖B ≤ c2 ‖ f‖B ∀ f ∈ B.
Let { fk} ⊂ L∞

c be such that ‖ fk− f‖B→ 0 when k→∞. Using a discrete version of Fatou’s
Lemma we can write

S f (x)≤ liminf
k→∞

S fk(x)

and consequently, by Fatou’s Lemma for B.F.S. (see [4, Lemma 1.5]) and (4.10),

‖S f‖B ≤ liminf
k→∞

‖S fk‖B ≤C2 liminf
k→∞

‖ fk‖B ≤C2 ‖ f‖B ∀ f ∈ B. (4.11)

From the fact that S fk(x)≤ 2 [S( f − fk)(x)+S f (x)], the other inequality can be obtained
from the previous case in the following way:

‖ f‖B = lim
k→∞

‖ fk‖B ≤ c liminf
k→∞

‖S fk‖B

≤ c
(

liminf
k→∞

‖S( fk− f )‖B+‖S f‖B
)

≤ c
(

liminf
k→∞

‖ fk− f‖B+‖S f‖B
)

≤ c‖S f‖B ∀ f ∈ B. (4.12)

This concludes the proof of (1.1).
Let us now see that the Haar system is an unconditional basis for B.
Given h∈ H̃ ⊂B′, we define h∗ : B→R by h∗( f ) :=

∫
X h f dµ = 〈 f ,h〉. These operators

satisfy

h∗(g) =
{

1 if h = g
0 if h 6= g

for every g ∈ H̃ .
For F ⊂ H̃ with ](F)< ∞ we define

TF f = ∑
h∈F
〈 f ,h〉h.

We use the previous result in order to see that these operators are bounded in B with a
constant independent of F . Indeed, given f ∈ B and g ∈ H̃ we have that

〈TF f ,g〉= ∑
h∈F
〈h, f 〉〈h,g〉=

{
〈 f ,g〉 if g ∈ F

0 if g /∈ F

and then we obtain that

S(TF f )(x) =

 ∑
g∈H̃
|〈TF f ,g〉|2 |g(x)|2

 1
2

=

(
∑
g∈F
|〈 f ,g〉|2 |g(x)|2

) 1
2

≤ S( f )(x) (4.13)

Finally, by (4.12), (4.13) and (4.11) we get

‖TF f‖B ≤C‖S(TF f )‖B ≤C‖S( f )‖B ≤C‖ f‖B .

Now we will prove that span(H̃ ) is dense in B.
From the hypothesis on B, it is enough to prove that span(H̃ ) is dense in L∞

c with norm
‖·‖B.
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Let ε > 0 be given and g ∈ L∞
c (X). From the fact that span(H̃ ) is dense in Lp0

w (X) for
1 < p0 < ∞ and w ∈ Ady

p0 (see [2, Theorem 9.1]) and g ∈ Lp0
w (X), there exists f ∈ span(H̃ )

such that

‖ f −g‖L
p0
w (X) ≤

εw(B)
1

p0

C1 ‖χB‖B
=

∥∥∥∥∥ εw(B)
1

p0

C1 ‖χB‖B
χB

w(B)
1

p0

∥∥∥∥∥
L

p0
w (X)

,

where B is a fixed ball in X and C1 is the constant in (4.3).
On the other hand, f −g ∈ L∞

c (X)⊂ B, f −g ∈ Lp0
w , and ‖ f −g‖B < ∞.

Let us now consider the family F := {( f − g, ε
χB

C1‖χB‖B
)}. From the fact that B has the

B.M.P. we can apply Theorem 4.2 in order to obtain that

‖ f −g‖B ≤C1

∥∥∥∥ε
χB

C1 ‖χB‖B

∥∥∥∥
B
= ε,

and thus, the density result is proved. �

5. APPLICATIONS

In this section we show some examples of B.F.S. which satisfy the hypothesis of Theo-
rem 1.1.

• When B = Lp(X ,µ), 1 < p < ∞, Theorem 1.1 is nothing but Theorem 3.2 (which
is Theorem 7.1 in [2]). In fact, in [2] the authors proved the boundedness of MD in
Lp(X ,µ) for every 1 < p < ∞ and the density of L∞

c (X ,µ) in Lp(X ,µ), that is the
B.M.P. in this case.

• Let us now consider the Lorentz spaces B= Lp,q(X ,µ) with 1 < p,q < ∞, given by
the measurable function f defined on X such that

‖ f‖∗p,q :=
(

q
p

∫
∞

0
(t p f ∗(t))q dt

t

) 1
q

< ∞,

where f ∗ is the non increasing rearrangement of f . It is well known that ‖·‖∗p,q
is not a norm in Lp,q(X ,µ) but we can always define an equivalent norm on these
spaces, (see for example [16] or [19]).

In this context, Theorem 1.1 is contained in Theorem 6.1 in [23], since in the
same article, the author proved that MD is bounded on Lp,q(X ,µ) for every 1 <
p,q < ∞.

• We now introduce some basic facts about Lp(·)(X ,µ) in order to establish the result
in this environment.

Let (X ,d,µ) be a locally compact space of homogeneous type and let p : X →
[1,∞) be a measurable function. For A⊂ X we define

p−A := inf
x∈A

p(x), p+A := sup
x∈A

p(x).

For simplicity we denote p+ = p+X , p− = p−X . We shall also suppose that 1 < p− ≤
p(x)≤ p+ < ∞ for x ∈ X .

The variable exponent Lebesgue spaces Lp(·)(X) = Lp(·)(X ,µ) are defined by the
µ-measurable functions f defined on X such that, for some positive λ , the func-
tional convex modular ρ( f/λ ) :=

∫
X | f (x)/λ |p(x) dµ(x) is finite. A Luxemburg

norm can be defined in Lp(·)(X) by taking

‖ f‖p(·) := inf{λ > 0 / ρ( f/λ )≤ 1} .
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These are special cases of Musielak-Orlicz spaces (see [22]), and generalize the
classical Lebesgue spaces. Actually, the most up to date reference for Lebesge
spaces with variable exponents happens to be the monograph recently published by
David Cruz-Uribe and Alberto Fiorenza [6].

Some of the following results were obtained in the Euclidean context (see for
example [18]), but it can be proved that they also hold in the context of homo-
geneous type spaces (for metric spaces see [15]). For example, it can be seen that
(Lp(·)(X),‖·‖p(·)) is a B.F.S. On the other hand the dual space of Lp(·)(X) is Lp′(·)(X)
and the Hölder inequality holds, that is∫

X
| f (x)g(x)| dµ(x)≤C‖ f‖p(·) ‖g‖p′(·) .

It was proved in [15] that C0(X ,µ), and consequently L∞
c (X ,µ), is dense in

Lp(·)(X ,µ) when X is a locally compact space. Thus Theorem 1.1 holds if we ask
M to be bounded on Lp(·) with 1 < p− ≤ p(x)≤ p+ < ∞. In [15] the authors proved
that if X is an α-Ahlfors space with finite measure and p(·) satisfies the log-Hölder
condition

|p(x)− p(y)| ≤ c
− log(d(x,y))

when d(x,y)< 1
2 , for some positive constant c, then M is bounded on Lp(·)(X ,µ).

• Finally, if Ω is an open subset of Rn with |Ω| = l, in [13] the authors define the
weighted variable exponent Lorentz spaces, as the set L

p(·),q(·)
w (Ω) of the measur-

able functions f such that the norm ‖ f‖
L

p(·),q(·)
w (Ω)

:=
∥∥∥w(t)t

1
p(t)−

1
q(t) f ∗(t)

∥∥∥
Lq(·)([0,l])

is finite.
In the same article the authors proved that this is a B.F.S. with the B.M.P. (see [13,

Theorem 3.12]), when w(t) = tγ(t), for certain function γ , and for p,q ∈ P1([0, l]),
where

P1([0, l]) := {r ∈ L∞([0, l]) / ∃ lim
t→0

r(t) = r(0), ∃ lim
t→∞

r(t) = r(∞), 1 < r− ≤ r+ < ∞}.
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